Application of matrix in electronics - Approach 2

Koh Meng Hock

June 3, 2020

In a previous write-up, I have introduced to you one way to solve electronics circuits by using a matrix approach. We will now consider another matrix approach to solve electronics circuits. We are still going to build the matrix M but through a slightly different perspective.

1 Example of two parallel resistors

Let us consider the first example in Figure 1. As we have done before, we are going to find the current through each resistor.

Figure 1

To build the matrix M, we will imagine the left loop (consisting of the voltage supply, resistor R_{1} and R_{2}) as Loop 1 with current I_{1} and the right loop (consisting of resistor R_{2} and R_{3} only) as Loop 2 with current I_{2}. The currents I_{1} and I_{2} are sketched in Figure 2 ,

Figure 2

In matrix M the element M_{11} is the sum of resistance in Loop 1. The element M_{22} is
the sum of resistance in Loop 2. This gives us the matrix M

$$
\left(\begin{array}{cc}
6 & M_{12} \tag{1}\\
M_{21} & 10
\end{array}\right)
$$

For the non-diagonal elements, the values are the negative of the sum of resistances shared by both Loop 1 and Loop 2 . In this case, there is only one resistor i.e. R_{2}. Therefore the matrix M is now

$$
\left(\begin{array}{cc}
6 & -4 \tag{2}\\
-4 & 10
\end{array}\right)
$$

Let us now look at the column matrix on the right-hand side which refers to the total voltage of Loop 1 and Loop 2. The total voltage in Loop 1 is 10 V , while it is 0 in Loop 2. Putting all these together, we have the matrix equation to solve:

$$
\left(\begin{array}{cc}
6 & -4 \tag{3}\\
-4 & 10
\end{array}\right)\binom{I_{1}}{I_{2}}=\binom{10}{0} .
$$

We can solve this immediately by taking the inverse of the square matrix and multiply it with the column matrix on the right-hand side. We get the answers:

$$
\begin{equation*}
\binom{I_{1}}{I_{2}}=\binom{2.2727}{0.9091} \tag{4}
\end{equation*}
$$

Here $I_{1}=2.2727 A$ refers to the total current in the circuit, and $I_{2}=0.9091 A$ is the amount of current through R_{3}. The amount of current through R_{2} is

$$
\begin{equation*}
I_{1}-I_{2}=2.2727-0.9091=1.3636 A \tag{5}
\end{equation*}
$$

Compare this to the earlier approach which we took to solve the circuit here.

2 Using determinants to solve for currents

Instead of finding the inverse of the matrix M, we can also solve for the current I_{1} and I_{2} using determinants.

From eq. (3) we will find three sets of determinants.

- That which would be the denominator:

$$
\left|\begin{array}{cc}
6 & -4 \tag{6}\\
-4 & 10
\end{array}\right|=44
$$

- Which will give us the current I_{1} later on:

$$
\left|\begin{array}{cc}
10 & -4 \tag{7}\\
0 & 10
\end{array}\right|=100
$$

- And the last which will give us I_{2} later on:

$$
\left|\begin{array}{cc}
6 & 10 \tag{8}\\
-4 & 0
\end{array}\right|=40
$$

Notice how the matrix in equations (7) and (8) are arranged from equatio (3). Now to get the currents I_{1} and I_{2} we divide these two values with a denominator given by equation (6)

$$
\begin{gather*}
I_{1}=\frac{100}{44}=2.2727 \mathrm{~A} \tag{9}\\
I_{2}=\frac{40}{44}=0.909 \mathrm{~A} . \tag{10}
\end{gather*}
$$

3 Example with 3×3 matrix

Let us now consider a circuit given in Figure 3 .

Figure 3

The matrix equation to be solved is

$$
\left(\begin{array}{ccc}
7 & -2 & 0 \tag{11}\\
-2 & 8 & -4 \\
0 & -4 & 10
\end{array}\right)\left(\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right)=\left(\begin{array}{c}
10 \\
0 \\
0
\end{array}\right) .
$$

We have four sets of determinants in this case:

- The denominator:

$$
\left(\begin{array}{ccc}
7 & -2 & 0 \tag{12}\\
-2 & 8 & -4 \\
0 & -4 & 10
\end{array}\right)=408
$$

- The determinant to find I_{1}

$$
\left(\begin{array}{ccc}
10 & -2 & 0 \tag{13}\\
0 & 8 & -4 \\
0 & -4 & 10
\end{array}\right)=640
$$

- The determinant to find I_{2}

$$
\left(\begin{array}{ccc}
7 & 10 & 0 \tag{14}\\
-2 & 0 & -4 \\
0 & 0 & 10
\end{array}\right)=200
$$

- The determinant to find I_{3}

$$
\left(\begin{array}{ccc}
7 & -2 & 10 \tag{15}\\
-2 & 8 & 0 \\
0 & -4 & 0
\end{array}\right)=80
$$

Dividing the determinants with the denominator (12), we get $I_{1}=1.569 \mathrm{~A}, I_{2}=0.490 \mathrm{~A}$
and $I_{3}=0.196 A$. The current going through R_{2} is

$$
\begin{equation*}
1.569-0.490=1.079 \mathrm{~A} \tag{16}
\end{equation*}
$$

and the current through R_{3} is

$$
\begin{equation*}
0.490-0.196=0.294 A . \tag{17}
\end{equation*}
$$

The current through R_{4} is simply $0.196 A$.

4 Exercises

Find the current through the resistors in the following circuits.

Figure 4

Figure 5

