
Each plotted point on the routegram represents a single *route*. For each position on the routegram, $\lambda + \chi + \delta = 1$. On the bottom axis, where $\delta = 0$, $\lambda = (1-\chi)$. Each position on the routegram can be expressed in terms of three parameters (λ, χ, δ) or simply two parameters (χ, δ) . The notation (χ, δ) is convenient as it echoes the Cartesian pair of 'along' and 'up' (x, y). Point O $(\frac{1}{4}, \frac{1}{2})$ is the position of a single link route at depth 1 (I = 1, c = 0, d = 1). Point P is $(\frac{1}{3}, \frac{1}{3})$; point Q is $(\frac{1}{2}, \frac{1}{3})$. Bayswater Road lies at position B $(\lambda = 0.5, \chi = 0.44, \delta = 0.06)$ or simply $(\frac{7}{16}, \frac{1}{16})$. This lies on the reference line $\lambda = \frac{1}{2}$. The grid of references lines could be equated with the 'rhumb lines' on a navigational chart (Wilford, 2000) or reseau (reference lines on a star map, etc.) to distinguish these from lines that are routes they represent.

A5.4 Route type

Structural types found commonly as routes in street networks are shown in black lower case. These mostly fall within the bounds of points S_1 , M, N, and S_2 . The set of stems – routes with all intermediate junctions threeway – radiates from point S_1 . The set of spines – routes with all intermediate