APPENDICES 283

Network properties Netgram properties L number of links in a network; Λ relative continuity = L/Snetwork sum continuity = Σ I Х relative connectivity = C/SС network sum connectivity = Σc Δ relative depth =D/S D network sum depth = Σd $\Lambda + X + \Delta = 1$ S sum value of a network Hetgram properties (= L + C + D)irregularity = Y/RΨ R number of routes regularity = $1 - \Psi$ Φ Υ number of types of route recursivity = D'/RΘ D' maximum depth value of Ω complexity = (Y - D')/R $\Phi + \Theta + \Omega = 1$ network

Properties for Bayswater network

	Network properties (Table 5.1)			Netgram values (Figure 6.4)		Hetgram values (Figure 6.12)		
L	73	R	27	Λ	0.28	Φ	0.26	
С	112	Y	20	Х	0.42	Θ	0.15	
D	79	D′	4	Δ	0.30	Ω	0.59	
S	264				1.00		1.00	

For the Bayswater network (Figure 5.13), there are 41 T-junctions ($J_3 = 41$) and 5 crossroads ($J_4 = 5$). Hence P = $p_3^{J3} = p_4^{J4} = (3^{41} \times 6^5) = 283,614,019,828,880,035,069,728$.

A6.3 The Netgram

Each plotted point on the netgram represents a whole *network* (route structure). For each position on the netgram, $\Lambda + X + \Delta = 1$. On the bottom axis, where $\Delta = 0$, $\Lambda = (1 - X)$. Each position on the netgram can be expressed in terms of three parameters (Λ , X, Δ) or simply two parameters (X, Δ). The notation (X, Δ) is convenient as it echoes the Cartesian pair of 'along' and 'up' (X, Y). A set of reference lines (shown in grey) may be used to conveniently locate positions on the netgram, using simple relationships between Λ , X and Δ . Point O ($\frac{1}{4}$, $\frac{1}{2}$) is the position of a single link network (L = 1, C = 0, D = 1). Point P is ($\frac{1}{3}$, $\frac{1}{3}$); point Q is ($\frac{1}{2}$, $\frac{1}{3}$). The grid of references lines could be equated with the 'rhumb lines' on a navigational chart (Wilford, 2000) or reseau (reference lines on a star map, etc.).