

9
Objective

- To introduce prime numbers and their applications in cryptography;
- To discuss some primality test algorithms and their efficiencies;
- To discuss factorization algorithms and their applications in cryptography;
- To describe the Chinese remainder theorem and its applications;
- To introduce quadratic congruence;
- To introduce modular exponentiation and logarithm.

Chapte

9

Contents

9.1 Introduction
9.2 Primes
9.3 Euler's Phi-Function
9.4 Fermat's Little Theorem
9.5 Euler's Theorem
9.5 Summary

- This chapter reviews some mathematical background concept needed for understanding the asymmetric-key or publickey cryptography.
- The primes is one of the mathematical concept uses in this cryptography extensively.

Chapte

9
Contents

- Two theorems that play important roles in asymmetric-key cryptography are Fermat's and Euler's theorem.
- An important requirement in a number of cryptography algorithms is the ability to choose a large prime number.
- Discrete logarithms are fundamental to a number of asymmetric-key algorithms, but it operates over modular arithmetic.
9.1 Introduction
9.2 Primes
9.3 Euler's Phi-Function
9.4 Fermat's Little Theorem
9.5 Euler's Theorem
9.5 Summary

Chapter

9.2 Primes

A prime is divisible only by itself and 1 .

Prime numbers
 $2 \Rightarrow 1 \cdot 2=2$
 $5 \Rightarrow 1.5=5$
 $17 \Rightarrow 1.17=17$
 $199 \Rightarrow 1.199=199$
 Composite Numbers
 $6 \Rightarrow 1.6 ; 2.3$
 $14 \Rightarrow 1 \cdot 14 ; 2 \cdot 7$
 $30 \Rightarrow 1 \cdot 30 ; 2 \cdot 15 ; 3 \cdot 10$
 $105 \Rightarrow 1 \cdot 105 ; 3 \cdot 35 ; 5 \cdot 21$

- A composite is a positive integer with more than two divisors or it can be factored into two or more values other than one (1) and itself.
- A positive integer is a prime if and only if it is exactly divisible by two integers: 1 and itself.

Example 9.1 What is the smallest prime?

Solution 9.1: Integer 2, which is divisible by 2 (itself) and 1
Note - Integer 1 is not a prime because it cannot be divisible by two different integers but only by itself.

9.2 Primes

Example 9.1 List the primes smallest than 10
Solution 9.1: There are four primes less than 10: $2,3,5$, and 7 .

- It is interesting to note that the percentage of primes in the range 1 to 10 is 40%.
- The percentage decreases as the range increases.

Example 9.1 List the primes between 1 to 30 .
Solution 9.1: There are ten primes: $2,3,5,7,11,13,17,19,23$, and 29.

- the percentage of primes is 33.3%.

Infinite Number of Primes

Here is an informal proof.
-Suppose the set of primes is finite (limited), with p as the largest prime.
-Multiply the set of primes become $\quad P=2 \times 3 \times \cdots \times p$
-The integer $(P+l)$ cannot have a factor $q \leq p$.
-If q also divides $(P+1)$, then q divides $(P+l)-P=1$
-The only number that divides 1 is 1 , which is not a prime.
-Therefore, q is larger than p.

Chapter 9	9.2 Primes
Example 9.2 Assume that the only primes are in the set	
Solution 9.2:	$\{2,3,5,7,11,13,17\}$. If $P=510510$, how many more primes are not in the set? $P+1=510511$
	However, $510511=19 \times 97 \times 277$; none of these primes were in the original list. Therefore, there are three primes greater than 17.
	1.17

9.2 Primes

Number of Primes

- To answer the second question, a function called $\pi(n)$ is defined that finds the number of primes smaller than or equal to n.
- The following shows the values of this function for different n 's.

$$
\begin{array}{llll}
\pi(1)=0 & \pi(2)=1 & \pi(3)=2 & \pi(10)=4 \\
\pi(20)=8 & \pi(50)=15 & \pi(100)=25 &
\end{array}
$$

- But if n is very large, we can use an approximation as:

$$
[n /(\ln n)]<\pi(n)<[n /(\ln n-1.08366)]
$$

Chapte

9.2 Primes

Example 9.3 Find the number of primes less than 1,000,000.

Solution 9.3: The approximation gives the range 72,383 to 78,543 . The actual number of primes is 78,498 .

$$
\begin{aligned}
& {[n /(\ln n)]<\pi(n)<[n /(\ln n-1.08366)]} \\
& \left.\left[n /\left(\frac{1}{n}\right)\right]<\pi(n)<\left[n / \frac{1}{n}-1.08366\right)\right] \\
& \left.\left[100000 / / \frac{1}{1000000}\right)\right]<\pi(n)<\left[1000000 /\left(\frac{1}{1000000}-1.08366\right)\right] \\
& {\left[10^{6} /\left(10^{-6}\right)\right]<\pi(n)<\left[10^{6} /\left(10^{-6}-1.08360\right)\right]} \\
& {\left[10^{\circ} \times 10^{6}\right]<\pi(n)<\left[10^{6} /(-1.08359)\right]}
\end{aligned}
$$

Chapte

9.2 Primes

If n is composite, then n has a prime divisor less than or equal to \sqrt{n}.

Proof.

- Let $n=a b, 1<a<n, 1<b<n$.
- We can't have both $a>\sqrt{n}$ and $b>\sqrt{n}$ since this would lead to $a b>n$.
- Therefore, n must have a prime divisor less than or equal to \sqrt{n}.

Chapter

9.2 Primes

Example 9.5
Is 301 a prime integer?
Solution 9.5: The floor of $\sqrt{301}=17$

- We need to check 2, 3, 5, 7, 11, 13, and 17.
- The numbers 2,3 , and 5 do not divide 301, but 7 does $(7 \times 43=301)$.
- Therefore 301 is not a prime.

```
Chapte
9
9.2 Primes
```


Sieve of Eratosthenes

- A method method to find all primes less than n by a Greek mathematician, Eratosthenes

Example 9.6
Suppose we want to find all primes less than 100.

- We write down all the numbers between 2 and 100
- Because $\sqrt{100}=10$, we need to see if any number less than 100 is divisible by $2,3,5$ and 7

Chapte

9.2 Primes

Solution 9.6:

Table 9.1 Sieve of Eratosthenes

	2	3	4	5	6	7	8	9	4θ
11	42	13	44	15	16	17	48	19	20
24	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	49
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	99
94	92	93	94	95	96	97	98	99	409

Chapte

9
Contents
9.1 Introduction
9.2 Primes
9.3 Euler's Phi-Function
9.4 Fermat's Little Theorem
9.5 Euler's Theorem
9.5 Summary

- Notation: $\phi(n)$
- Sometimes known as Euler's totient function play a very important role in cryptography.
- The function finds the number of integers that are both smaller than n and relatively prime to n.
- The function $\phi(n)$ calculates the number of elements in this set.
- The following rules help to find the value of $\phi(n)$

1. $\phi(1)=0$.
2. $\quad \phi(p)=p-1$ if p is a prime.
3. $\quad \phi(m \times n)=\phi(m) \times \phi(n)$ if m and n are relatively $p_{\phi}\left(p^{e}\right)=p^{e}-p^{e-1}$
4.

- These four rules can be combined to find the value of $\phi(n)$
- Example: if n can be factored as $n=p_{1}^{e l} \times p_{2}^{e 2} \times \ldots \times p_{k}^{e k}$ then we combine the third and fourth rules to find

$$
\phi(n)=\left(p_{1}^{e 1}-p_{1}^{e l-1}\right) \times\left(p_{2}^{e 2}-p_{2}^{e 2-1}\right) \times \ldots \times\left(p_{k}^{e k}-p_{k}^{e k-1}\right)
$$

Chapter

9.3 Euler's Phi-Function

Example 9.9 What is the value of $\phi(240) ?$

Solution 9.9: We can write $240=2^{4} \times 3^{1} \times 5^{1}$

Then, $\phi(240)=\left(2^{4}-2^{3}\right) \times\left(3^{1}-3^{0}\right) \times\left(5^{1}-5^{0}\right)$

$$
\begin{aligned}
& =(16-8) \times(3-1) \times(5-1) \\
& =8 \times 2 \times 4=64
\end{aligned}
$$

Solution 9.8: (Third rule) Because 2 and 5 are a primes.

$$
\begin{aligned}
\phi(10) & =\phi(2) \times \phi(5) \\
& =(2-1) \times(5-1) \\
& =1 \times 4=4
\end{aligned}
$$

Chapter
9.3 Euler's Phi-Function

Example 9.1 Can we say that $\phi(49)=\phi(7) \times \phi(7)$

$$
\begin{aligned}
& =(7-1) \times(7-1) \\
& =6 \times 6=36
\end{aligned}
$$

Solution 9.10• No. Because third rule applies when m and n

 are relatively prime.- (Fourth rule) Here $49=7^{2}$

$$
\begin{aligned}
\phi(49) & =\phi\left(7^{2}\right) \\
& =7^{2}-7^{2-1} \\
& =49-7=42
\end{aligned}
$$

9.3 Euler's Phi-Function

Example 9.1 What is the number of elements in $Z_{14} * ?$
Solution 9.11• (Third rule) $\phi(14)=\phi(7) \times \phi(2)$

$$
=(7-1) \times(2-1)
$$

$$
=6 \times 1=6
$$

- The numbers are $1,3,5,9,11$ and 13 .

$$
\text { Interesting point: If } n>2 \text {, the value of } \phi(n) \text { is even. }
$$

Solution 9.1: a) $\quad \phi(29)=28$
b) $\phi(32)=16$
c) $\phi(80)=32$
d) $\phi(100)=40$
e) $\phi(101)=100$

Chapter
9.4 Fermat's Little Theorem

- Plays a very important role in number theory and cryptography.
- Sometime helpful for quickly finding a solution to some exponentiations.
- Two version of the theorem:

$$
a^{p-1} \equiv a \bmod p \quad a^{p} \equiv a \bmod p
$$

- If p is a prime and a is an integer such that p does not divide a.
- Remove the condition on a.
- If p is a prime and a is an integer.

Multiplicative Inverses

$$
a^{-1} \bmod p=a^{p-2} \bmod p
$$

A very interesting application of Fermat's theorem in finding some multiplicative inverses quickly if the modulus is a prime.

- p is a prime and a is an integer.

Example 9.1 The answers to multiplicative inverses modulo a prime can be found without using the extended Euclidean algorithm
a. $8^{-1} \bmod 17=8^{17-2} \bmod 17=8^{15} \bmod 17=15 \bmod 17$
b. $5^{-1} \bmod 23=5^{23-2} \bmod 23=5^{21} \bmod 23=14 \bmod 23$
c. $60^{-1} \bmod 101=60^{101-2} \bmod 101=60^{99} \bmod 101=32 \bmod 101$
d. $22^{-1} \bmod 211=22^{211-2} \bmod 211=22^{209} \bmod 211=48 \bmod 211$

Exercise 9.2 Find the result of the following, using Fermat's little theorem:
a) $5^{15} \mathrm{mod} 13$
b) $5^{18} \bmod 17$
C) $456{ }^{17} \mathrm{mod} 17$
d) $145^{102} \bmod 101$

Chapter 9 9.4 Fermat's Little Theorem

Solution 9.2: Find the result of the following, using Fermat's little theorem:
a) $5^{15} \bmod 13$
b) $5^{18} \bmod 17$
c) $456^{17} \mathrm{mod} 17$
d) $145^{102} \bmod 101$

Exercise 9.3. Find the result of the following, using Fermat's little theorem:
a) $5^{-1} \bmod 13$
b) $15^{-1} \bmod 17$
c) $27^{-1} \bmod 41$
d) $70^{-1} \bmod 101$
(Note that all moduli are primes)

Chapte

9

9.4 Fermat's Little Theorem

Solution 9.3: Find the result of the following, using Fermat's little theorem:
a) $5^{-1} \bmod 13$
b) $15^{-1} \bmod 17$
C) $27^{-1} \bmod 41$
d) $70^{-1} \bmod 101$
(Note that all moduli are primes)

Chapter
9.5 Euler's Theorem

- Can be thought of as a generalization of Fermat's Little theorem.
- The modulus in Fermat's theorem is a prime, while Euler's theorem is an integer
- Two version of this theorem:
$a^{\phi(n)} \equiv 1(\bmod n) \quad a^{k \times \phi(n)+1} \equiv a(\bmod n)$
- If a and n are coprime
- Remove the condition that a and n should be coprime
- If $n=p \times q, a<n$, and k an integer.

Chapte

9.5 Euler's Theorem

Proof of the second version based on the first version.

- Since $a<n$, three cases are possible:

Chapter 9
9.5 Euler's Theorem

Multiplicative Inverses
$a^{-1} \bmod n=a^{\phi(n)-1} \bmod n$

Euler's theorem can be used to find multiplicative inverses modulo a prime or a composite

- n and a are coprime.

Example 9.1 The answers to multiplicative inverses modulo a composite can be found without using the extended Euclidean algorithm if we know the factorization of the composite:
a. $8^{-1} \bmod 77=8^{申(77)-1} \bmod 77=8^{59} \bmod 77=29 \bmod 77$
b. $7^{-1} \bmod 15=7^{\phi(15)-1} \bmod 15=7^{7} \bmod 15=13 \bmod 15$
c. $60^{-1} \bmod 187=60^{\phi(187)-1} \bmod 187=60^{159} \bmod 187=53 \bmod 187$
d. $71^{-1} \bmod 100=71^{\phi(100)-1} \bmod 100=71^{39} \bmod 100=31 \bmod 100$

Chapte

9
9.5 Euler's Theorem

Solution 9.4: Find the result of the following, using Euler's theorem:
a) $12^{-1} \bmod 77$
b) $16^{-1} \bmod 323$
c) $20^{-1} \bmod 403$
d) $44^{-1} \bmod 667$
(Note that $77=7 \times 11,323=17 \times 19,403=31 \times 13$, and $667=23 \times 29$)

- The integers can be divided into three groups:
\square the number 1 ,
primes, and
\square composite.
- Euler's phi-function, $\phi(n)$, which is sometimes called Euler's totient function, plays a very important role in cryptography.
- Euler's phi-function finds the number of integers that are both smaller than n and relatively prime to n.

9.6 Summary
- In cryptography, a common modular operation is exponentiation.
- Cryptography also involves modular logarithms.
- If exponentiation is used to encrypt or decrypt, the adversary can use logarithms to attack.
- Therefore, we need to know how hard it is to reverse the exponentiation.

