[Part 2]
Asymmetric-Key Encipherment

Chapter 9

Mathematics of Cryptography

Forouzan, B.A."Cryptography and Network Security (International Edition). United States: McGraw Hill, 2008

Objective

To introduce prime numbers and their applications
in cryptography;

To discuss some primality test algorithms and their
efficiencies;

To discuss factorization algorithms and their
applications in cryptography;

To describe the Chinese remainder theorem and its
applications;

To introduce quadratic congruence;

To introduce modular exponentiation and logarithm.
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! Objective

+ To introduce prime numbers and their
applications in cryptography;

+ To discuss some prime applications including
Euler’s phi-function, Fermat’s theorem and
Euler’s theorem;

+ Todiscuss the Fermat’s and Euler’s theorems
as the multiplicative inverse application.
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9.1 Introduction

! 9.1 Introduction

* Two theorems that play important roles in asymmetric-key
cryptography are Fermat’s and Euler’s theorem.

* An important requirement in a number of cryptography
algorithms is the ability to choose a large prime number.

+ Discrete logarithms are fundamental to a number of
asymmetric-key algorithms, but it operates over modular
arithmetic.

Stalling W._Cryptographyand Network Security: Principles and Practices (Fourth Edition). UnitedStates of America: Pearson. Prentice Hall, 2006. (page 235) 1.7
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! 9.2 Primes

Introduction

» The primes is one of the mathematical concept uses in
asymmetric-key or public-key cryptography extensively.

» The topic is a large part of any book on number theory.

! 9.2 Primes

Definition

» Primes is the positive integers can be divided into three

groups.
Positive
integers
I |
Number 1 Primes Composites
Exactly one divisor Exactly two divisors More than two divisors

Figure: Three groups of positive integers.

! 9.2 Primes

A prime is divisible
only by itself and 1.

+ Apositive integer is a prime if Prine NuMBERS
and only if'it is exactly divisible by 2= 1.2:2
two integers: 1 and itself. §= 1.5:5
13 = 1.13=1%
199 = 1.199=199
* Acomposite is a positive integer ComposiTE NuMBERS
with more than two divisors or it b= 106;23
can be factored into two or more 14=21.14; 2'%
values other than one (1) and 30 =130, 2:15;3:10

itself. 105 =>1-109; 3-3%;5:21

http://shanahanl.pbworks.com/f/1253699479prime_composite.jpg
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! 9.2 Primes

el XMN What is the smallest prime?

Solution 9.1: Integer 2, which is divisible by 2 (itself) and 1.

Note - Integer 1 is not a prime because it cannot be
divisible by two different integers but only by itself.

1.12




! 9.2 Primes

=

N

. Prime Numbers are values that can

Prive NunBERS
2= 122
5= 1.5:5
13 = 1.13=1%
199 = 1-199=1499

only be factored into one (1) and itself.

ComposiTE NuMBERS
b= 16,23
14=21-19; 2%

30 =130, 2:15;3-10
108 =1-105; 3-3%;5-21

Composite Numbers are values that
can be factored into two or more
values other than one (1) and itself.

http://shanahani_pbwor

rks.com/f/1253699479/prime_composite.jps 1.13

! 9.2 Primes

Cardinality of primes

Now, two questions naturally arise:
e [s there a finite number of primes?

* [s the list infinite?

Given a number n, how many primes are smaller than or
equal to n?

1.15

!
SEMICRME | ist the primes smallest than 10.

Solution 9.1: There are four primes less than 10: 2, 3, 5, and 7.

+ ltis interesting to note that the percentage of primes
in the range 1 to 10 is 40%.
* The percentage decreases as the range increases.

SElel RN | ist the primes between 1 to 30.

Solution 9.1: There are ten primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, and
29.

+ the percentage of primes is 33.3%.

9.2 Primes

1.14

Infinite Number of Primes

Here is an informal proof.

*Suppose the set of primes is finite (limited), with p as the
largest prime.

*Multiply the set of primes become  P=2x3x---xp
*The integer (P+1) cannot have a factor g <p.

«If ¢ also divides (P+1), then ¢ divides (P+1) - P =1

*The only number that divides 1 is 1, which is not a prime.
*Therefore, ¢ is larger than p.

There is an infinite number of primes.

! 9.2 Primes

1.16




9.2 Primes

SElplollXeR Assume that the only primes are in the set
{2,3,5,7, 11, 13, 17 }. If P = 510510, how many more
primes are not in the set?

Solution 9.2: p+1 =510511

However, 510511 = 19 X 97 X 277; none of these
primes were in the original list.

Therefore, there are three primes greater than 17.

1.17

9.2 Primes

S elplellXeEE] Find the number of primes less than 1,000,000.

Solution 9.3: The approximation gives the range 72,383 to 78,543.
The actual number of primes is 78,498.

1.19

! 9.2 Primes

Number of Primes

+ To answer the second question, a function called 7(7)
is defined that finds the number of primes smaller than or
equal to n.

* The following shows the values of this function for different
n's.
7(1)=0 7(2)=1 7(3)=2 7(10)=4
7(20)=8 7(50)=15  7(100)=25

» Butif nis very large, we can use an approximation as:
[n/(Inn)]< z(n) <[n/(Inn—1.08366)]

(Lagrange) (Gauss) 1.18

9.2 Primes

!
S ETIERCE] Find the number of primes less than 1,000,000.

Solution 9.3: The approximation gives the range 72,383 to 78,543.
The actual number of primes is 78,498.

[n/(Inm)] < 2(n) <[n/(Inn—1.08366)]
1 1
[n/(;)] <m(n)< [n/(;71.08366)]

1
[1000000/( 1000000)] <z(n)< [1000000/(

[10°/(10°)] < z(m) <[10°/(10 ~1.08366)]
[10°x10°]< () <[10°/(~1.08359)]

1 -1.08366)]
1000000

1.20




! 9.2 Primes

Checking for Primeness

* The next question that : given a number n, how we can
determine if n is a prime?

* The answer is that we need to see if the number is
divisible by all primes less than \/;

1.21

9.2 Primes

S EIERCRY |5 97 a prime integer?

Solution 9.4: The floor of V97 =9
* The primes lessthan 9 are 2, 3, 5,and 7.
* We need to see if 97 is divisible by any of these
numbers.

» ltis not, so 97 is a prime.

1.23

! 9.2 Primes

If n is composite, then n has a prime divisor less than or equal

to \/n.

o letn=ab, 1<a<nl<b<n.

o We can't have both a > v/n and b > /n since this would
lead to ab > n.

@ Therefore, n must have a prime divisor less than or equal

to v/n.
O

y
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! 9.2 Primes

S elylolSXeRS] |s 301 a prime integer?

Solution 9.5: The floor of /301=17

« Weneedtocheck 2, 3,5,7, 11, 13, and 17.
e The numbers 2, 3, and 5 do not divide 301,
but 7 does (7 x 43 = 301).

* Therefore 301 is not a prime.

1.24




Sieve of Eratosthenes

mathematician, Eratosthenes.

less than 100 is divisible by 2, 3, 5and 7.

9.2 Primes

* A method method to find all primes less than »n by a Greek

Do XeNs: Suppose we want to find all primes less than 100.

* We write down all the numbers between 2 and 100.

» Because V100 =10, we need to see if any number

1.25

! 9.2 Primes

Solution 9.6:

Table 9.1 Sieve of Eratosthenes

2 3 4 S 6 7 3 9 40
11 2 13 + 15 16 17 B 19 20
21 22 23 24 25 26 27 25 29 30
31 32 33 34 35 36 37 B 39 40
41 2 43 44 45 46 47 43 49 50
8 2 53 34 55 36 7 B 59 [
61 62 63 64 65 66 67 63 69 70
71 2 73 4 B 76 + B 79 <0
o~ 82 83 84 NS <6 &7 =% 89 99
3 92 o3 94 905 96 97 o8 90 +00

!
Solution 9.6: The following shows the process:

itself)
itself)
itself)

itself)
5. The numbers left over are primes.

9.2 Primes

1. Cross out all numbers divisible by 2 (except 2
2. Cross out all numbers divisible by 3 (except 3
3. Cross out all numbers divisible by 5 (except 5

4. Cross out all numbers divisible by 7 (except 7

1.27
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! 9.3 Euler’s Phi-Function

« Notation: #(n)

+ Sometimes known as Euler’s totient function play a very
important role in cryptography.

« The function finds the number of integers that are both
smaller than » and relatively prime to ».

« The function #(7) calculates the number of elements in
this set.

1.29

9.3 Euler’s Phi-Function

The difficulty of finding ¢(n) depends on
the difficulty of finding the factorization of n.

SEMICRNY \What is the value of ¢(13)?

Solution 9.7: (Second rule)
Because 13 is a prime, #(13)=(13-1)=12

SEMIRRE \What is the value of ¢(10)?

Solution 9.8: (Third rule) Because 2 and 5 are a primes.
#(10)=$(2)x §(5)

=2-1)x(5-1)

=1x4=4 131

! 9.3 Euler’s Phi-Function

 The following rules help to find the value of ¢(n)

1. ¢(1)=0.

2. dp)=p-1ifpisaprime.

3. P(mxn)=g@(m)xP(n) if m and n are relatively
PPe) = p -

4, if p is a prime.

+ These four rules can be combined to find the value of #(1)

- Example: if » can be factored as n=p{"' x pi* x...x p;*
then we combine the third and fourth rules to find

d(n)=(p}" = p;)x(ps* = ps )% x (py = pi ™)

1.30

! 9.3 Euler’s Phi-Function

SRR \What is the value of ¢(240) ?

Solution 9.9: We can write 240=2*x3' x5

Then, ¢(240)=(2*-2%)x(3'=3")x(5'-5")
=(16-8)x(3-1)x(5-1)
=8x2x4=64

1.32




! 9.3 Euler’s Phi-Function

Can we say that ¢(49)=¢(7)x ¢(7)

=(7-)x(7-1)
—6x6=36

Solution 9.10* No. Because third rule applies when m and n
are relatively prime.

« (Fourth rule) Here 49 =7

$(49)=(7*)
— 77
=49-7=42

1.33

9.3 Euler’s Phi-Function

Find the value of the following ¢ (n).

a) ¢(29)
b) ¢(32)
c) ¢(80)
d) ¢(100)
e) ¢4(101)

1.35

! 9.3 Euler’s Phi-Function

S ENIJCRRE What is the number of elementsin Z,, *?

Solution 9.11: (Third rule) ¢(14)=¢(7)x $(2)
=(7-1)x2-1)
=6x1=6

¢ The numbersare 1, 3,5, 9, 11 and 13.

Interesting point: If n > 2, the value of ¢@(n) is even.

1.34

! 9.3 Euler’s Phi-Function

Solution 9.1: a) ¢(29)=28
b) #(32)=16
c) ¢(80)=32
d) ¢(100) =40
e) ¢(101)=100

1.36
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! 9.4 Fermat’s Little Theorem

» Plays a very important role in number theory and
cryptography.

» Sometime helpful for quickly finding a solution to some
exponentiations.

« Two version of the theorem:

a”' =amod p a” =amod p

* Ifpisaprimeandais * Remove the condition on a.
an integer such that p

does not divide a. * Ifpisaprimeandaisan

integer.

1.38

! 9.4 Fermat’s Little Theorem

SEMIERMI Find the result of 610 mod 11.

Solution 9.12s We have 6 mod 11 = 1.
* This is the first version of Fermat’s little theorem
where p = 11.

SEERRE Find the result of 312 mod 11.

Solution 9.13» Here the exponent (12) and the modulus (11) are not
the same.
+ With substitution, this can be solved using Fermat’s

little theorem.

3" modl1=(3" x3)mod11=(3"mod11)(3modl1)=(3x3)modl1=9

! 9.4 Fermat’s Little Theorem

Multiplicative Inverses - A very interesting application of
. , Fermat's theorem in finding some
a modp=a""modp multiplicative inverses quickly if
the modulus is a prime.

* pisaprimeand ais an integer.

S EERRE The answers to multiplicative inverses modulo a prime

can be found without using the extended Euclidean
algorithm:
a. 8 mod 17=8"""2mod 17=8" mod 17 =15 mod 17
b. 5 ' mod 23 =52 mod 23 = 52! mod 23 = 14 mod 23
c. 60~ mod 101 = 601912 mod 101 = 60%° mod 101 =32 mod 101
d. 227 mod 211 =2221"2 1mod 211 =2229 mod 211 = 48 mod 211

1N



theorem:

a) 5B mod 13

b) 58 mod 17

c) 456" mod 17
d) 145'92mod 101

DGR Find the result of the following, using Fermat's little

9.4 Fermat’s Little Theorem

1.41

! 9.4 Fermat’s Little Theorem

Solution 9.2: Find the result of the following, using Fermat's little
theorem:

a) 5P mod 13

b) 58 mod 17

c) 456!"mod 17
d) 14512 mod 101

1.42

theorem:

a) 5''mod 13
b) 15'mod 17
¢) 27-'mod 41
d) 70-'mod 101

9.4 Fermat’s Little Theorem

DGR} Find the result of the following, using Fermat's little

(Note that all moduli are primes)

1.43

! 9.4 Fermat'’s Little Theorem
Solution 9.3: Find the result of the following, using Fermat's little
theorem:
a) 5''mod 13
b) 15-'mod 17
¢) 27-'mod 41

d) 70-'mod 101

(Note that all moduli are primes)

1.44
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! 9.5 Euler’s Theorem

» Can be thought of as a generalization of Fermat’s Little
theorem.

* The modulus in Fermat’s theorem is a prime, while Euler’s
theorem is an integer.

« Two version of this theorem:

a’™ =1(modn) a”*"" = g(modn)

* If a and n are coprime. * Remove the condition that a
and n should be coprime.

* Ifn=pxgq a<n,and kan
integer.

Advantage(s):

*Euler’s theorem is very
useful for solving some
problems.

*It sometimes is helpful for
quickly finding a solution to
some exponentiations.

9.5 Euler’s Theorem

Euler’s Theorem

ak><¢(n)+l

= a(modn)

! 9.5 Euler’s Theorem

Proof of the second version based on the first version.

» Since a < n, three cases are possible:

179



20° mod77=1

20°7" mod 77 =

9.5 Euler’s Theorem

SCINECRRE Find the result of 624 mod 35.

Solution 9.15:We have 62 mod 35 = 6°°“mod35=1

SENERERI Find the result of 2052 mod 77.

Solution 9.16:+ Let k = 1 on the second version; &
+ We have 2052 mod 77 =20""""' mod 77

P(77)=P(T)x $(11)
=(7-Dx(11-1)
=(6)x(10)=60

=(20mod 77)(20%* mod 77)

=(20)(1)(20)mod 77 =15
o s

1 O

Multiplicative Inverses . Euler's theorem can be used to
find multiplicative inverses

a'modn =a* ™!

* nand q are coprime.

S EJERME The answers to multiplicative inverses modulo a
composite can be found without using the extended

Euclidean algorithm if we know the factorization of the
composite:

8 mod 77 = 8% mod 77 = 8°° mod 77 = 29 mod 77
7 mod 15 =719  mod 15= 77 mod 15 = 13 mod 15

a0 T e

! 9.5 Euler’s Theorem

modn modulo a prime or a composite.

60~ mod 187 = 60°(137 ~1inod 187 = 60159 mod 187 = 53 mod 187
717" mod 100 = 712199164 100 = 713° mod 100 = 31 mod 100

a) 12-'mod 77

b) 16'mod 323
¢) 20" mod 403
d) 44-'mod 667

667 =23 x 29)

S CIERRY Find the result of the following, using Euler’s theorem:

(Note that 77=7x 11, 323 =17 x 19, 403 =31 x 13, and

9.5 Euler’s Theorem

1.51

Solution 9.4: Find the result of the following, using Euler’s theorem:
a) 12-'mod 77
b) 16 mod 323
c) 20" mod 403
d) 44-'mod 667

(Note that 77=7x 11, 323 =17 x 19, 403 =31 x 13, and
667 =23 x 29)

! 9.5 Euler’s Theorem

1.52
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! 9.6 Summary

Table: Fermat’s little theorem and Euler’s theorem.

First version:

Fermat |If ged(a, p)=1.then a”" =1(mod p)
Second version:

a’ = a(mod p)

First version:
Euler  |If ged(a,n)=1 ,then a’"” =1(modn)

Second version:
Ifn=pxgqganda<n,then ¢

kxg(n)+l

= g(modn)

! 9.6 Summary

The integers can be divided into three groups:
4 the number 1,
U primes, and
U composite.

Euler’s phi-function, ¢(n) which is sometimes called
Euler’s totient function, plays a very important role in
cryptography.

Euler’s phi-function finds the number of integers that
are both smaller than » and relatively prime to n.

! 9.6 Summary

In cryptography, a common modular operation is
exponentiation.

Cryptography also involves modular logarithms.

If exponentiation is used to encrypt or decrypt, the
adversary can use logarithms to attack.

Therefore, we need to know how hard it is to reverse
the exponentiation.
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