

Forouzan, B.A. Cryptography and Network Security (International Edition). United States: McGraw Hill, 2008.

10.1 Introduction 10.2 Asymmetric-Key Cryptography 10.3 RSA Cryptosystem 10.4 Attacks on RSA Cryptosystem	
10.2 Asymmetric-Key Cryptography 10.3 RSA Cryptosystem	
10.2 Asymmetric-Key Cryptography 10.3 RSA Cryptosystem	
10.3 RSA Cryptosystem	
10.4 Attacks on RSA Cryptosystem	
10.5 Other Cryptosystems	
10.6 Summary	

1.3

Chapter	10	Contents
	10.1 Introduction	
	10.2 Asymmetric-Key Cryptography	
	10.3 RSA Cryptosystem	
	10.4 Attacks on RSA Cryptosystem	
	10.5 Other Cryptosystems	
	10.6 Summary	
		1.4

1

Chapter 10	Contents
	Contents
10.1 Introduction	
10.2 Asymmetric-Key Cryptograp	hy
10.3 RSA Cryptosystem	
10.4 Attacks on RSA Cryptosyster	m
10.5 Other Cryptosystems	
10.6 Summary	
	1.10

Chapter 1	0 10.2 Asymmetric-Key Cryptograp	ohy
Example 10.	When <i>n</i> is large, $n = p \times q$ is a one-way function (OWF).	
	 Given p and q, it is always easy to calculate n; Given n, it is very difficult to compute p and q; This is the factorization problem. 	
Example 10.2	When n is large, the function $y = x^k \mod n$ is a trapdoor one-way function (TOWF).	
	 Given <i>x</i>, <i>k</i>, and <i>n</i>, it is easy to calculate <i>y</i>; Given <i>y</i>, <i>k</i>, and <i>n</i>, it is very difficult to calculate <i>x</i>; This is the discrete logarithm problem; However, if we know the trapdoor, <i>k</i>' such that <i>k</i>×<i>k</i>'=1mod φ(<i>n</i>), we can use <i>x</i> = <i>y</i>^{k'}mod <i>n</i> to find <i>x</i>. 	
		1.36

• The modulus *n*, a very large number, is created during the key generation process (will discuss later).

Chapter 10	10.3 RSA Cryptosystem
Key Generation	In RSA, <i>p</i> and <i>q</i> must be at least 512 bits;
Algorithm : RSA key generation. RSA_Key_Generation	<i>n</i> must be at least 1024 bits;
Select two large primes p and q such that $p \neq q$. $n \leftarrow p \times q$ $\phi(n) \leftarrow (p-1) \times (q-1)$ Select e such that $1 < e < \phi(n)$ and e is coprime to $\phi(n)$ $d \leftarrow e^{-1} \mod \phi(n)$ // d is inverse of e modulo $\phi(n)$ Public_key \leftarrow (e, n) // To be announced publicly Private_key $\leftarrow d$ // To be kept secret return Public_key and Private_key	

Chapter 10	10.3 RSA Cryptosystem
Encryption and Decryptio	<u>n</u>
Algorithm : RSA encryption	
RSA_Encryption (P, e, n)	// P is the plaintext in Z_n and $P < n$
{ $C \leftarrow Fast Exponentiation (P, e, n)$	// Calculation of ($P^e \mod n$)
return C	
}	
lgorithm : RSA decryption	
RSA_Decryption (C, <i>d</i> , <i>n</i>)	//C is the ciphertext in Z_n
{	
$P \leftarrow Fast_Exponentiation (C, d, n)$	// Calculation of $(\mathbf{C}^d \mod n)$
return P	

Chapter 1	0 10.3 RSA Cryptosystem
Example 10.5 $e=13$	Now imagine that Alice wants to send the plaintext 5 to Bob.
<i>d</i> = 37	• Alice uses the public exponent 13 to encrypt 5: $C = P^e \mod n = 5^{13} \mod 77 = 26$
n = 77 $P = 5$	 Bob receives the ciphertext 26 and uses the private key 37 to decrypt the ciphertext:
<i>C</i> = 26	$P = C^d \mod n = 26^{37} \mod 77 = 5$

Chapter 1	10.3 RSA Cryptosystem		
Example 10.5 Bob chooses 7 and 11 as p and q .			
	•Calculates $n = p \ge q = 7 \ge 11 = 77$.		
•The value of $\phi(n) = (7-1)(11-1) = 60$.			
•Now Bob chooses two exponents, <i>e</i> and <i>d</i> , from Z			
•If Bob chooses $e = 13$, then $d = 37$.			
• Note that $e \times d \mod 60 = 1$ (they are inverses of each other).			
	1.6		

Chapter 1	0 10.3 RSA Cryptosystem
Example 10.6	Azizah creates a pair of keys for herself. She chooses 397 and 401 as p and q .
	 Calculates n = p x q = 397 x 401 = 159197. The value of φ(n) = (397 − 1)(401 − 1) = 158400.
 Now Azizah chooses two exponents, <i>e</i> and <i>d</i>, Z_{q(159197)}*. If Azizah chooses <i>e</i> = 343, then <i>d</i> = 12007. 	
	1.67

Chapter 1	10.3 RSA Cryptosystem
Example 10.6	Suppose Mubassyir wants to send a message "NO" to Azizah.
Code Character 00 A 01 B 02 C 03 D 04 E 05 F	•He changes each character to a number (from 00 to 25), with each character coded as two digits.
06 G 07 H 08 I 09 J 10 K 11 L	•He then concatenates the two coded characters and gets a four-digit number.
12 M 13 N 14 O 15 P 16 Q	•The plaintext is 1314.
17 R 18 S 19 T 20 U 21 V 22 W	•Figure 10.7 shows the process.
22 w 23 x 24 ¥ 25 z	1.68

Chapter 10	10.2 Asymmetric-Key Cryptography
Exercise 10.4 From	Example 10.5b, proof that :
a) .	$1314^{343} \mod 159197 = 33677$
b)	$33677^{12007} \mod 159197 = 1314$
Solution 10.4:	
	1.71

Chapter	10	Contents	Chapter 10 10.4 Attacks on RSA Cryptosystem
			Introduction
	10.1 Introduction 10.2 Asymmetric-Key Cryptography 10.3 RSA Cryptosystem		 No devastating attacks on RSA have been yet discovered. Several attacks have been predicted based on the : weak plaintext,
	10.4 Attacks on RSA Cryptosystem 10.5 Other Cryptosystems		weak parameter selections, orinappropriate implementation.
	10.6 Summary		 Figure 10.7 shows the categories of potential attacks.
		1.77	1.78

Chapter	r 10 10.5 Other Cryptosystem	าร	
	ElGamal Cryptosyste	m	
	 Besides RSA and Rabin, another public-key cryptosystem is ElGamal. 		
•	ElGamal is based on the discrete logarithm problem.		
	For the ElGamal cryptosystem, p must be at least 300 digits and r must be new for each encipherment.		
	The bit-operation complexity of encryption or decryption in ElGamal cryptosystem is polynomial.		
		1.87	

Chapter **10** 10.6 Summary

- There are two ways to achieve secrecy: symmetric- and asymmetric-key cryptography that complement each other.
- The conceptual differences between the two systems are basically based on how they keep a secret.

	Symmetric-Key	Asymmetric-Key
Keys	Single key: secret-key	Two keys: public-key, private-key.
Secret	Shared between two entities.	Unshared.
Implementation	Based on substitution and permutation of symbols.	Based on applying mathematical functions to numbers.

Chapter	10	Exercises
Exercise 1), In RSA: a) Given $n = 221$ and $e = 5$, find d.	
	b) Given $n = 3937$ and $e = 17$, find d	
	c) Given $p = 19$, $q = 23$ and $e = 3$, find n , $\phi(n)$ and	
	work Security (International Edition), Singapore: McGraw-Hill, 2008, (page 334)	

Chapter 1 0	Exercises			
Exercise 10. ² To understand the security of the RSA algorithm, find <i>d</i> if you know that $e = 17$ and $n = 187$.				
Forouzan, B.A. Cryptography and Network Security (International Edition). Singapore: McGraw-Hill, 2008. (page 334)				

Chapter 10	Exercises			
Exercise 10. In a public-key system using RSA algorithm, you intercept the ciphertext $C = 10$ sent to a user whose public key is $(n, e) = (35, 5)$. What is the plaintext M ?				
Stalling, W. Cyptography and Network Security: Principles and Practices (Fourth Edition), United Status of America: Pearson, Prentice Hall, 2006 (page 382)				