

Contents
10.1 Introduction
10.2 Asymmetric-Key Cryptography
10.3 RSA Cryptosystem
10.4 Attacks on RSA Cryptosystem
10.5 Other Cryptosystems
10.6 Summary

- To distinguish between two cryptosystems: symmetric-key and asymmetric-key;
- To discuss the RSA cryptosystem;
- To introduce the usage of asymmetric-key cryptosystems;
- To introduce the attacks in asymmetric-key cryptosystems;

Chapte
 10

Contents
10.1 Introduction
10.2 Asymmetric-Key Cryptography
10.3 RSA Cryptosystem
10.4 Attacks on RSA Cryptosystem
10.5 Other Cryptosystems
10.6 Summary

Chapte

10
10.1 Introduction

- Symmetric- and asymmetric-key cryptography will exist in parallel and continue to serve the community.
- Asymmetric-key cryptography also known as public-key cryptography.
- Asymmetric-key cryptography are complements to the symmetric-key (secret-key).
- The conceptual differences between them are based on how these systems keep a secret (key).
- Example: Symmetric-key cryptography; Each one has a secret key (K) and shared with all.

$$
\begin{aligned}
& n=6 \\
= & n(n-1) / 2 \\
= & 6(6-1) / 2 \\
= & 15
\end{aligned}
$$

Chapte
 10

10.1 Introduction

Symmetric-key cryptography:

- Based on sharing secrecy
- the secret must be shared between two persons.
- For n people, we need $n(n-1) / 2$ shared secrets.
- Based on substitution and permutation of symbols (characters or bits).

Asymmetric-key cryptography:

- Based on personal secrecy.
- the secret is personal (unshared).
- Each person creates and keeps his/her own secret.
- For n people, we need: only n shared secrets.
- Based on applying mathematical functions to numbers.

Chapte
 10

Contents

- Example: Asymmetric-key cryptography; Each one has a public key $(P U)$ and a private key $(P R)$; All $P U$ s are shared.

10
10.1 Introduction

Chapte
10
Contents

- Asymmetric-key cryptography can be used for confidentiality (privacy / secrecy), authentication, or both.
- The most widely used asymmetric-key cryptography is RSA.
- The difficulty of attacking RSA is based on the difficulty of finding the prime factors of a composite number.

Chapter 10
 10.2 Asymmetric-Key Cryptography

- Asymmetric-key cryptography uses two separate keys: one private key and one public key.

Figure 10.1: Locking and unlocking in asymmetric-key cryptosystem.
10.1 Introduction
10.2 Asymmetric-Key Cryptography
10.3 RSA Cryptosystem
10.4 Attacks on RSA Cryptosystem
10.5 Other Cryptosystems
10.6 Summary

Chapte
 10
 10.2 Asymmetric-Key Cryptography

Description:
-Encryption and decryption are thought of as locking and unlocking padlocks with keys.
-The padlock is locked with a public key can be unlock only with the corresponding private key.

-Example:

- Alice locks the padlock with Bob's public key, then only Bob's private key can unlock it.

Example: Alice sent a message M to Bob.

Exercise 10
Bob is sending a plaintext M to Alice using an asymmetric-key cryptosystem. Assume that Alice's public key and private key are $K_{\text {Alicel }}$ and $K_{\text {Alice }}$ respectively.
a) What is the function of the ciphertext C generated by Bob's encryption E ?
b)Show how Alice get the original M from Bob during the decryption D.

Solution 10.1 a$) \quad C=E_{K_{\text {Alicel }}}(M)$
b) $\quad M=D_{K_{\text {tucec }}}(C)$

Chapter 10
 10.2 Asymmetric-Key Cryptography

General Idea

- Unlike symmetric-key cryptography, there are distinctive keys in asymmetric-key cryptography: a private key and a public key.

Figure10.2: General idea of asymmetric-key cryptosystem.

Chapte
 10
 10.2 Asymmetric-Key Cryptography

The secret key used in symmetric-key cryptography is different from the nature of the private key used in asymmetric-key cryptography

The private key : a number or a set A secret key is not exchangeable with a private key because they are different types of secret
of numbers !

Chapter
 10
 10.2 Asymmetric-Key Cryptography

(Figure 10.2 shows several important facts)

Important fact (1):

- The burden of providing security is mostly on the receiver (Bob). Bob needs to:
- create two keys: one private and one public.
- distribute the public key to the community through a public-key distribution channel.
- Although the channel does not required to provide secrecy, it must provide authentication and integrity.

Attacker should not be able to advertise his/her public key to the community pretending that it is Bob's public key.

Chapte

10

- Example: F wants to send a message to $A ; F$ will use A 's public key.

Chapte
 10

Example: F wants to send a message to $A ; F$ will use A 's public key.
$P U_{A}, P R_{A}$

Chapter
 10

Contents

- Example: A only needs his private key to read any message from B, C, D, E and F. But A needs all public key of them to send message.
- Bob needs only one private key to receive all correspondence from anyone in the community.

However, Alice needs n public keys to communicate with n people in the community, one public key for each person.

- Alice needs a ring of public keys.

Chapte
 10
 10.2 Asymmetric-Key Cryptography

Plaintext / Ciphertext

- In asymmetric-key cryptography, the plaintext and ciphertext are treated as integers.
 before encryption.

$$
C=f\left(K_{\text {public }}, P\right)
$$

Chapte
 10

Contents

- Example: A only needs his private key to decrypt message received from F.

$$
P_{F}=D\left(P R_{A}, C_{A}\right)
$$

- The decryption function g is used only for decryption

Chapter
 10

Contents

- Example: A sends message to all by encrypting it using corresponding public key of them

Chapter
 10
 10.2 Asymmetric-Key Cryptography

Solution 10.0:

Chapte
 10

10.2 Asymmetric-Key Cryptography

- Asymmetric-key cryptography is normally used to encrypt or decrypt small pieces of information, such as the cipher key for a symmetric-key cryptography.
- In other words, asymmetric-key cryptography normally is used for ancillary goals instead of message encipherment that play a very important role in cryptography today.

Trapdoor One-Way Function

- The main idea behind asymmetric-key cryptography is the misunderstood:
The advent of asymmetric-key cryptography DOES NOT
ELIMINATE the need for symmetric-key cryptography.

Reasons:

1) Asymmetric-key cryptography is much slower than symmetric-key cryptography because it uses mathematical functions for encipherment.
2) Asymmetric-key cryptography is still needed for authentication, digital signatures, and secret-key exchanges.
concept of the trapdoor one-way function $f: x \rightarrow y$, that is

- f is one-to-one.
- f if a public.
- One-Way Function (OWF)

Figure10.3: A function as rule mapping a domain to a range.

Function :

$$
y=f(x)
$$

A rule that associates (maps) one element in set A , called the domain, to one element in set B, called the range.

- Invertible Function :

$$
x=f^{-1}(y)
$$

A function that associates each element in the range with exactly one element in the domain.

10
10.2 Asymmetric-Key Cryptography

Trapdoor One-Way Function (TOWF)
A one-way function (OWF) with a third properties :
3) Given y, and a trapdoor (secret), x can be easily computed.

One-Way Function (OWF)

A function that satisfies the following two properties :

1) f is easy to compute.

Given $x, y=f(x)$ can be easily computed.
2) f^{-1} is difficult to compute.

Given y, it is computationally infeasible to
calculate $x=f^{-1}(y)$

Chapter 10
 10.2 Asymmetric-Key Cryptography

Example 10. When n is large, $n=p \times q$ is a one-way function (OWF).
-Given p and q, it is always easy to calculate n; -Given n, it is very difficult to compute p and q; -This is the factorization problem.

Example 10. When n is large, the function $y=x^{k} \bmod n$ is a trapdoor one-way function (TOWF).

- Given x, k, and n, it is easy to calculate y;
- Given y, k, and n, it is very difficult to calculate x;
- This is the discrete logarithm problem;
- However, if we know the trapdoor, k^{\prime} such that $k \times k^{\prime}=1 \bmod \phi(n)$, we can use $x=y^{k^{\prime}} \bmod n$ to find x.

Chapter 10
 10.2 Asymmetric-Key Cryptography

Example 10. For $x=6, a=9$, and $p=11$, we compute

$$
y \equiv x^{a} \equiv x\left(\left(x^{2}\right)^{2}\right)^{2} \bmod p
$$

with 4 multiplications:

$$
\begin{aligned}
y & =6\left(\left(6^{2}\right)^{2}\right)^{2} \bmod 11=6\left((36)^{2}\right)^{2} \bmod 11 \\
& =6\left((3)^{2}\right)^{2} \bmod 11=6(9)^{2} \bmod 11 \\
& =6(81) \bmod 11=6(4) \bmod 11 \\
& =24 \bmod 11=2
\end{aligned}
$$

However, finding an a such that $6^{a} \equiv 2 \bmod 11$ is hard. We need to try all possibilities (from 1 to $p-1$) to obtain such a.
10.2 Asymmetric-Key Cryptography

Security of Asymmetric-key Cryptography

- Similar to symmetric-key cryptography schemes, the brute force exhaustive search attack is always theoretically possible but keys used are too large (> 512 bits).
- Keys used must be large enough to make brute force attack impractical, but small enough for practical encipherment that requires the use of very large numbers.
- However, the enciperment process is slow compared to symmetric-key cryprography schemes.

Chapter 10
 10.2 Asymmetric-Key Cryptography

Privacy / Confidentiality :

-sender encrypts message with receover's public key;

Authentication (Digital Signature) :

- sender creates signature by encrypting the message with his/her private key;

Integrity

Services Provided

Key Exchange :
To exchange a session key between two entities.

Chapter
 10
 10.2 Asymmetric-Key Cryptography

Confidentiality

$$
Y=E\left(P U_{b}, X\right)
$$

$$
X=D\left(P R_{b}, Y\right)
$$

Figure10.4: Asymmetric-key cryptosystem: secrecy / privacy / confidentiality.
\qquad

Authentication

Figure10.5: Asymmetric-key cryptosystem: authentication.

Chapte
 10
 10.2 Asymmetric-Key Cryptography

Applications

- Asymmetric-key cryptography are characterized by the use of a cryptographic algorithm with the two keys.
- Depending on the application, the sender uses either the sender's private key or the receiver's public key, or both, to perform some type of cryptographic function.
- In broad terms, asymmetric-key cryptography can be classified the use into three categories:

[^0]

10
10.3 RSA Cryptosystem

Introduction

- The most common public-key algorithm is the RSA cryptosystem, named for its inventors (Rivest, Shamir, and Adleman).
- RSA uses two exponents:

- Suppose P is the plaintext and C is the ciphertext;
- Alice uses $C=P^{e} \bmod n$ to create ciphertext from plaintext;
- Bob uses $P=C^{d} \bmod n$ to retrieve the plaintext sent by Alice;
- The modulus n, a very large number, is created during the key generation process (will discuss later).

Chapte
 10

10.3 RSA Cryptosystem

Figure10.4: Complexity of operations in RSA

- Based on number theory operations and the difficulty to find prime factors for a large number, $n=p q$, where p and q are primes.

```
Chapte
1 0
10.3 RSA Cryptosystem
```


Summary of RSA idea (Figure 10.4):

- Alice uses a one-way function (modular exponentiation) with a trapdoor known only to Bob.
- Eve, who does not know the trapdoor cannot decrypt the message.
> - If some day, a polynomial algorithm for eth root modulo n calculation is found, modular exponentiation is not a one-way function anymore.

Figure10.5: Encryption, decryption, and key generation in RSA.

Chapte
 10

10.3 RSA Cryptosystem

RSA Structure

- RSA uses two algebraic structures:

Encryption/Decryption Ring

$$
R=\left\langle Z_{n},+, \times>\right.
$$

- Encrypt/decrypt using the commutative ring \mathbf{R} with two arithmetic operations (+, x).
- This ring is public since modulus n is public.

Key-Generation Group
$G=<Z_{\phi(n)} *, \times>$

- RSA uses multiplicative group G for key generation.
- Hidden from public because modulus $\phi(n)$ is hidden from public.

Chapte
 10
 10.3 RSA Cryptosystem

Example 10.4 Given $p=5$ and $q=3$.

- Calculates $n=p \times q=5 \times 3=15$.
- The value of $\phi(n)=(p-1)(q-1)=(5-1)(3-1)=8$.
- Choose integer $e, \rightarrow \operatorname{gcd}(\phi(n), e)=1$ and $1<e<\phi(n)$.

Say $e=5$

- Calculates $d=e^{-1} \bmod \phi(n)=5^{-1} \bmod 8$.

Use Euler's theorem to find the inverse:

$$
\begin{aligned}
a^{-1} & =a^{\phi(n)-1} \bmod n \\
d & =5^{\phi(8)-1} \bmod 8
\end{aligned}
$$

$$
\begin{aligned}
d & =5^{\phi(8)-1} \bmod 8 \\
d & =5^{4-1} \bmod 8 \\
& =5^{3} \bmod 8 \\
d & =5
\end{aligned}
$$

- Public Key, $K_{p u}=\{e, n\}=\{5,15\}$
- Public Key, $K_{p r}=\{d, n\}=\{5,15\}$

Chapte
 10
 10.2 Asymmetric-Key Cryptography

Exercise 10. a) Find the value of ϕ (15).
b) Using the Euler's theorem, proof that $4^{5} \bmod 15=4$

Solution 10.1(Second version of Euler's theorem)

```
Let }k=1
```


Chapter 10

10.3 RSA Cryptosystem

Exercise 10. Given $p=11$ and $q=13$. Assume that $e=11$ is used to encrypt a message $M=7$,
a) calculate the value of d, and the ciphertext C.
b) Show the decryption process to get the original message

Solution 10.1:
10.3 RSA Cryptosystem

Example 10.5 Bob chooses 7 and 11 as p and q.
-Calculates $n=p \times q=7 \times 11=77$.
-The value of $\phi(n)=(7-1)(11-1)=60$.
-Now Bob chooses two exponents, e and d, from Z_{60}.
-If Bob chooses $e=13$, then $d=37$

- Note that $e \times d \bmod 60=1$
(they are inverses of each other).

| Example 10.5 | Now imagine that Alice wants to send the plaintext 5
 to Bob. |
| :---: | :---: | :---: |
| $e=13$ | • Alice uses the public exponent 13 to encrypt $5:$ |
| $d=37$ | $C=P^{e} \bmod n=5^{13} \bmod 77=26$ |

Exercise 10.1 From Example 10.5a, proof that $d=37$.
(Multiplicative inverses from Euler's theorem)
$a^{-1} \bmod n=a^{\phi(n)-1} \bmod n$

```
Chapte
10
10.2 Asymmetric-Key Cryptography
```

Exercise 10. From Example 10.5a, proof that $d=37$.
(Multiplicative inverses from Euler's theorem)

$$
a^{-1} \bmod n=a^{\phi(n-1} \bmod n
$$

Solution 10.2: $d=e^{-1} \bmod \phi(n)$

$$
\begin{aligned}
& =13^{-1} \bmod \phi(77) \\
& =13^{\phi(60)-1} \bmod 60 \\
& =13
\end{aligned}
$$

10.2 Asymmetric-Key Cryptography

Exercise 10. From Example 10.5b, proof that :
a) $5^{13} \bmod 77=26$
b) $26^{37} \bmod 77=5$

Solution 10.3:

Chapte
 10
 10.3 RSA Cryptosystem

Example 10.6 Suppose Mubassyir wants to send a message "NO" to

code	Character
-	${ }_{\text {A }}^{\text {A }}$
02	c
- 03	E
- 05	${ }_{6}^{\text {F }}$
07	н
-88	I
10 10 10	${ }^{\mathrm{k}}$
${ }_{1}^{11}$	${ }_{\text {L }}^{\text {L }}$
${ }^{13}$	N
14 15 15	\bigcirc
${ }^{16}$	-
18	s
19	
${ }^{22}$	v
22 23	x
${ }_{2}^{24}$	\%

-He changes each character to a number (from 00 to 25), with each character coded as two digits.
-He then concatenates the two coded characters and gets a four-digit number.
-The plaintext is 1314.
-Figure 10.7 shows the process.

Exercise 10. From Example 10.5b, proof that
a) $\quad 1314^{343} \bmod 159197=33677$
b) $\quad 33677^{12007} \bmod 159197=1314$

Solution 10.4:

```
Chapter 10
10.2 Asymmetric-Key Cryptography
```

Exercise 10.' From Example 10.5a, proof that $d=12007$.
(Multiplicative inverses from Euler's theorem)

$a^{-1} \bmod n=a^{\phi(n)-1} \bmod n$

Solution 10.3: $d=e^{-1} \bmod \phi(n)$
$=13^{-1} \bmod \phi(77)$
$=13^{\phi(00)-1} \bmod 60$
$=13$

Chapte
 10.2 Asymmetric-Key Cryptography

Exercise 10. From Example 10.5b, proof that:
a) $\quad 1314^{343} \bmod 159197=33677$
b) $33677^{12007} \bmod 159197=1314$

Solution 10.5:

Example 10.7

Encrypt 'RENAISSANCE' using $p=53$ and $q=61$
$n=p^{*} q=3233$
Say $e=71$, then $d=791$
(check the validity of e and d)
Break the message into blocks of 4 digits where $\mathrm{A}=00, \mathrm{~B}=01, \ldots, \mathrm{Z}=25$ (in practice,
characters would be represented by their 8 bit ASCll codes)
Thus RE NA IS SA NC E = 170413000818180013020426
The 1st block is encrypted as $1704^{71} \bmod 3233=3106$
$c=310601000931269119842927$

Chapte
10
10.3 RSA Cryptosystem

Example 10.8

$p=61, \quad q=53, \quad p q=3233$,

$e=17$ (public exponent), $d=2753$ (private exponent)
Public key is ($p q, e$).
Private key is d.
$C=$ encrypt $(T)=\left(T^{17}\right) \bmod 3233$
$T=\operatorname{decrypt}(C)=\left(C^{2753}\right) \bmod 3233$
Encrypt $(123)=\left(123^{17}\right) \bmod 3233=337587917446653715596592958817679803 \bmod 3233=$ 855

Chapte

10
10.3 RSA Cryptosystem

Real use of RSA

- In general, RSA is not used to encrypt long messages.
- Instead it is used for:
- Transmitting short secret key / value such as credit card, key for use in symmetric encrypt/decrypt system.
- Digital signature
- Authentication such as identifying an entity.
- Certificate.
10.4 Attacks on RSA Cryptosystem

Introduction

- No devastating attacks on RSA have been yet discovered.
- Several attacks have been predicted based on the :
- weak plaintext,
- weak parameter selections, or
- inappropriate implementation
- Figure 10.7 shows the categories of potential attacks
10.4 Attacks on RSA Cryptosystem
- The obvious way to do this attacks is to factor the public modulus, n, into its two prime factors, p and q.
- From p, q and e, the attacker can easily get d.
- The hard part is factoring n :
- Security on RSA depends on factoring being difficult.
- In fact, the task of recovering the private key is equivalent to the task of factoring the modulus.
- It should be noted that the hardware improvements alone will not weaken the RSA, as long as appropriate key length are used.

Chapter
10
10.4 Attacks on RSA Cryptosystem

- Another way to break the RSA is to find a technique to compute e th roots $\bmod n$
- Since $C=M^{e} \bmod n$, the e th root of $C \bmod n$ is the message m.
- This would allow someone to recover encrypted messages and forge signatures even without knowing the private key.
- No general methods are currently known that attempt to break RSA in this way.
- However, in special cases where multiple related messages are encrypted with the same small exponent, it may be possible to recover the messages.

Chapte
10
10.4 Attacks on RSA Cryptosystem

- There are no attack against the algorithm but instead the protocol.
- Attacker sees a ciphertext and guesses that the message might be.

Chapter 10

10.1 Introduction
10.2 Asymmetric-Key Cryptography
10.3 RSA Cryptosystem
10.4 Attacks on RSA Cryptosystem
10.5 Other Cryptosystems
10.6 Summary

Contents
10.5 Other Cryptosystems

- There are another asymmetric-key or public-key cryptosystems:
- Rabin cryptosystem.
- EIGamal cryptosystem
- Elliptic Curve cryptosystem (ECC)

Chapte

10
10.5 Other Cryptosystems

Rabin Cryptosystem

- The Rabin cryptosystem can be thought of as an RSA cryptosystem in which the value of e and d are fixed.
- Based on quadratic congruence.
- The encryption is $C \equiv P^{2}(\bmod n)$ and the decryption is $P \equiv C^{1 / 2}(\bmod n)$.
- The Rabin cryptosystem is not deterministic: Decryption creates four plaintexts.

Chapter

10
10.5 Other Cryptosystems EIGamal Cryptosystem

- Besides RSA and Rabin, another public-key cryptosystem is ElGamal.
- EIGamal is based on the discrete logarithm problem.
- For the EIGamal cryptosystem, p must be at least 300 digits and r must be new for each encipherment.
- The bit-operation complexity of encryption or decryption in ElGamal cryptosystem is polynomial.
10.5 Other Cryptosystems

Figure10.8: Encryption, decryption, and key generation in the Rabin cryptosystem.

[^1]10
10.5 Other Cryptosystems Elliptic Curve Cryptosystem

- Although RSA and ElGamal are secure asymmetric-key cryptosystems, their security comes with a price, their large keys.
- Researchers have looked for alternatives that give the same level of security with smaller key sizes.
- One of these promising alternatives is the elliptic curve cryptosystem (ECC).

Chapte
 10
 10.5 Other Cryptosystems

- Based on theory of elliptic curves.
- The general equation for an elliptic curve is

$$
y^{2}+b_{1} x y+b_{2} y=x^{3}+a_{1} x^{2}+a_{2} x+a_{3}
$$

- Elliptic curves over real numbers use a special class of elliptic curves of the form:

$$
y^{2}=x^{3}+a x+b
$$

10
10.5 Other Cryptosystems

- The security of ECC depends on the difficulty of solving the elliptic curve logarithm problem

Figure10.10: Two examples elliptic curves over a real field.

Chapter 10

10.6 Summary

- There are two ways to achieve secrecy: symmetric- and asymmetric-key cryptography that complement each other.
- The conceptual differences between the two systems are basically based on how they keep a secret.

	Symmetric-Key	Asymmetric-Key
Keys	Single key: secret-key	Two keys: public-key, private-key.
Secret	Shared between two entities.	Unshared.
Implementation	Based on substitution and permutation of symbols.	Based on applying mathematical functions to numbers.

Chapte
 10

10.6 Summary

- In asymmetric-key cryptography:

Encryption and decryption can be thought of as locking and unlocking padlocks with keys.

- Locked with a public key;
- Unlock only with the corresponding private key.

The burden of providing security is mostly in the receiver, who needs to:

- create two keys (public and private key).
- Distribute the public key to the community via a public-key distribution channel.

Chapter 10

Exercises

Exercise 10. In RSA:
a) Given $n=221$ and $e=5$, find d.
b) Given $n=3937$ and $e=17$, find d.
c) Given $p=19, q=23$ and $e=3$, find $n, \phi(n)$ and d.

- The most common public-key algorithm is the RSA cryptosystems.
- No devastating attacks have yet been discovered on RSA.
- Another asymmetric-key cryptography algorithms are Rabin cryptosystem, EIGamal cryptosystem, and Elliptic Curve cryptosystem (ECC).
- The main idea behind symmetric-key cryptography is the concept of the trapdoor one-way function (TOWF), which is a function such f is easy to compute, but f^{-1} is computationally infeasible unless a trapdoor is used.

Chapter 10

Exercise 10. Perform encryption and decryption using the RSA algorithm for the following:
a) $p=3, q=11, e=7$, and $M=5$.
b) $p=5, q=11, e=3$, and $M=9$.
c) $p=7, q=11, e=17$, and $M=8$.
d) $p=11, q=13, e=11$, and $M=7$.
e) $p=17, q=31, e=7$, and $M=2$.

Chapter 10

Exercises

Exercise 10. In a public-key system using RSA algorithm, you intercept the ciphertext $C=10$ sent to a user whose public key is $(n, e)=(35,5)$. What is the plaintext M ?

Exercise 10

Exercises

Exercise 10. To understand the security of the RSA algorithm,
find d if you know that $e=17$ and $n=187$.

[^0]: Figure10.6: Asymmetric-key cryptosystem: authentication and confidentiality.

[^1]: Figure10.9: Encryption, decryption, and key generation in the EIGamal cryptosystem.

