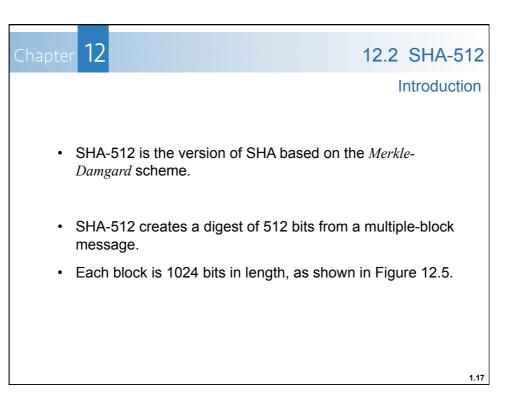
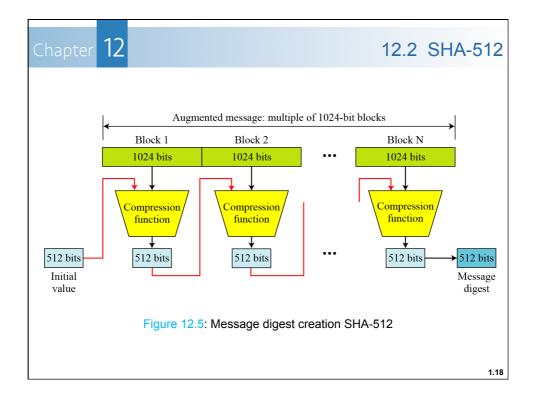
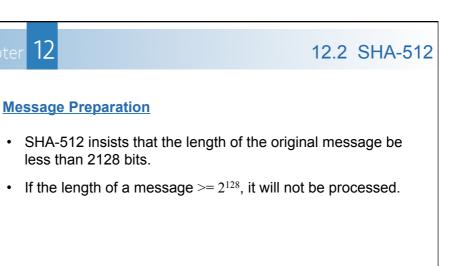
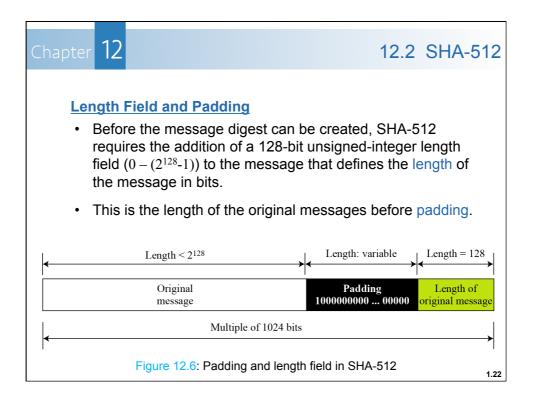

Chapter	12			1	2.1 Inti	roductic	n	
	Secure Hash Algorithm (SHA)							
	• Sometimes referred to as <i>Secure Hash Standard</i> (SHS).							
	• The standard mostly based on <i>MD5</i> .							
	• 1 st version: <i>SHA-1</i> .							
	• New versions: SHA-224, SHA-256, SHA-384, SHA-512.							
Table 1	Table 12.1 Characteristics of Secure Hash Algorithms (SHAs)							
	Characteristics	SHA-1	SHA-224	SHA-256	SHA-384	SHA-512		
Maxim	Maximum Message size		$2^{64} - 1$	$2^{64} - 1$	$2^{128} - 1$	$2^{128} - 1$		
Block s	Block size		512	512	1024	1024		
Messag	Message digest size		224	256	384	512		
Numbe	Number of rounds		64	64	80	80		
Word s	ize	32	32	32	64	64		

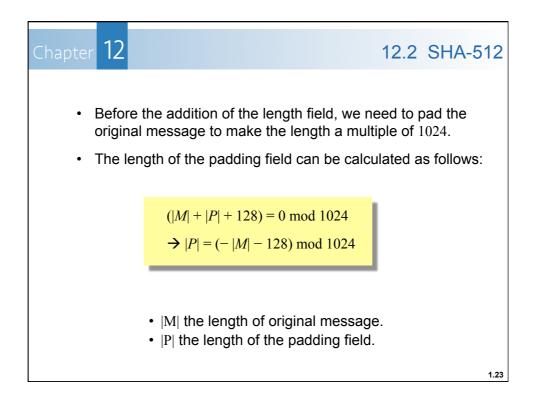






Chapter




• This is not usually a problem because is probably larger than the total storage capacity of any system.

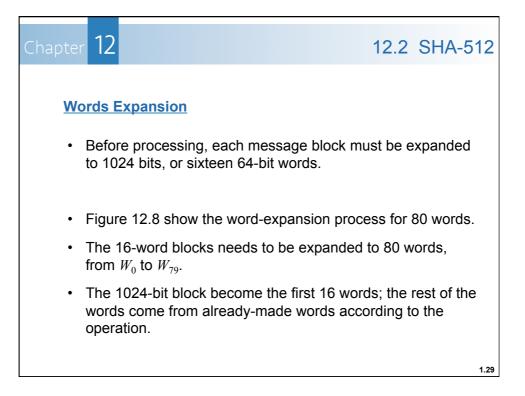
Chapter 12	12.2 SHA-512
Example 12.1:	This example shows that the message length limitation of SHA-512 is not a serious problem. Suppose we need to send a message that is 2 ¹²⁸ bits in length. How long does it take for a communications network with a data rate of 264 bits per second to send this message?
Solution 12.1:	A communications network that can send 2 ⁶⁴ bits per second is not yet available. Even if it were, it would take many years to send this
	message. This tells us that we do not need to worry about the SHA-512 message length restriction.

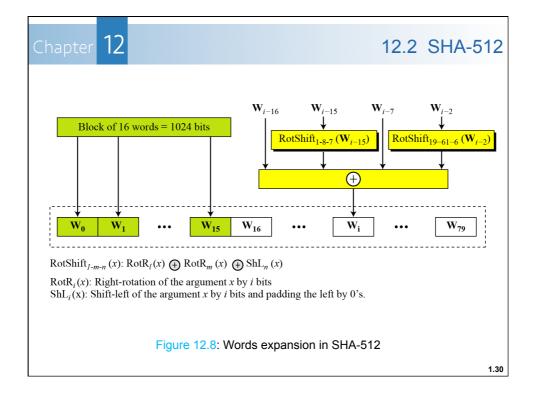
Chapter 12	12.2 SHA-512
Example 12.2:	This example also concerns the message length in SHA-512. How many pages are occupied by a message of 2 ¹²⁸ bits?
Solution 12.2:	Suppose that a character is 32, or 2^6 , bits. Each page is less than 2048, or approximately 2^{12} , characters. So 2^{128} bits need at least $2^{128} / 2^{18}$, or 2^{110} , pages.
	This again shows that we need not worry about the message length restriction.

Chapter 12	12.2 SHA-512
Example 12.3:	What is the number of padding bits if the length of the original message is 2590 bits?
Solution 12.3:	We can calculate the number of padding bits as follows: $ P = (-2590 - 128) \mod 1024$ $= -2718 \mod 1024$
	= 354 The padding consists of one 1 followed by 353 0' s.

Chapter 12		12.2 SHA-512
Example 12.4:	Do we need padding if the length of message is already a multiple of 102	-
Solution 12.4:	Yes we do, because we need to add So padding is needed to make the ne of 1024 bits.	

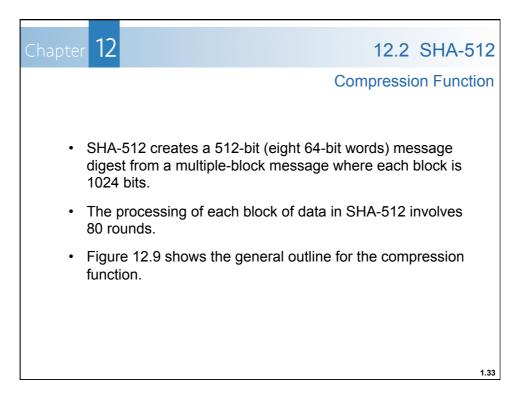
Chapter1212.2 SHA-512Example 12.5:What is the minimum and maximum number of padding
bits that can be added to a message?Solution 12.5:The minimum length of padding is 0 and it happens
when $(-|M| - 128) \mod 1024$ is 0.
This means that $|M| = -128 \mod 1024 = 896 \mod 1024$ bits.
In other words, the last block in the original message is
896 bits.
We add a 128-bit length field to make the block
complete.

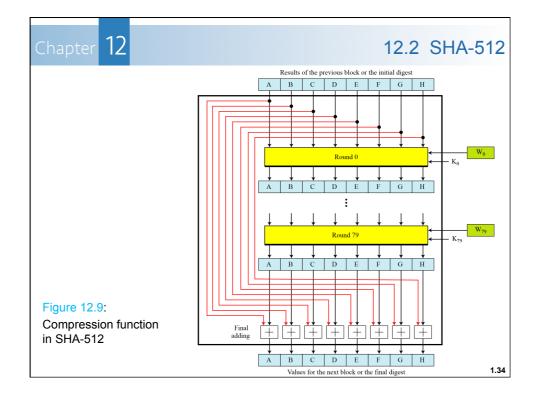

1.25

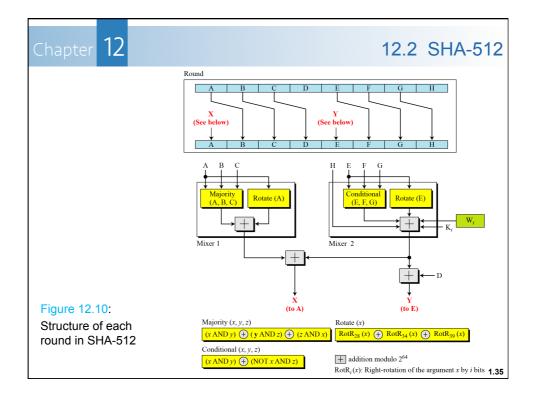

Chapter 12	12.2 SHA-512
Solution 12.5:	The maximum length of padding is 1023 and it happens when $(- M - 128) = 1023 \mod 1024$.
	This means that the length of the original message is $ M = (-128 - 1023) \mod 1024$ or the length is $ M = 897 \mod 1024$.
	In this case, we cannot just add the length field because the length of the last block exceeds one bit more than 1024.
	So we need to add 897 bits to complete this block and create a second block of 896 bits.
	Now the length can be added to make this block

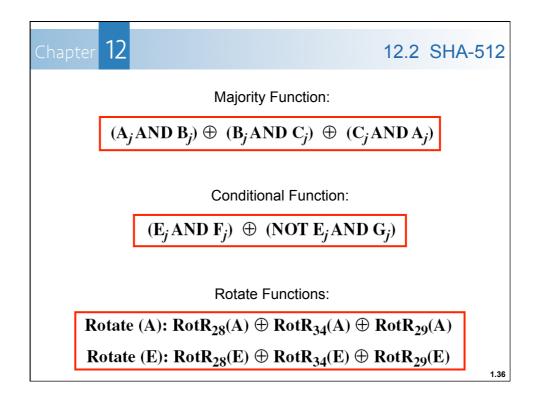
12 12.2 SHA-512 **Words** • SHA-512 operates on words of 64 bits. This means that after the padding and the length field are ٠ added to the message, each block of the message consists of sixteen 64-bits words. The message digest also made of 64-bit words, but it is only ٠ eight words that named as A, B, C, D, E, F, G, and H. 16 words, each of 64 bits = 1024 bits Message block 8 words, each of 64 bits = 512 bits Message А В С D Е F G Н digest Figure 12.7: A message block and the digest as words 1.28

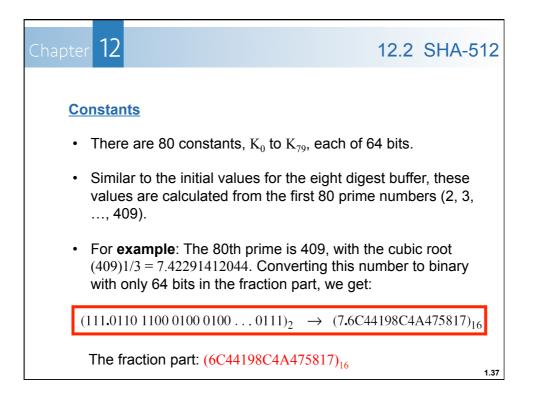
complete.

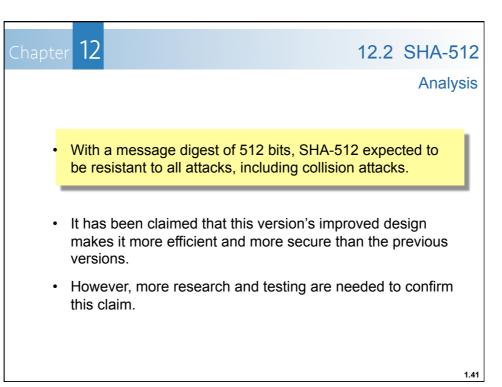

1.27

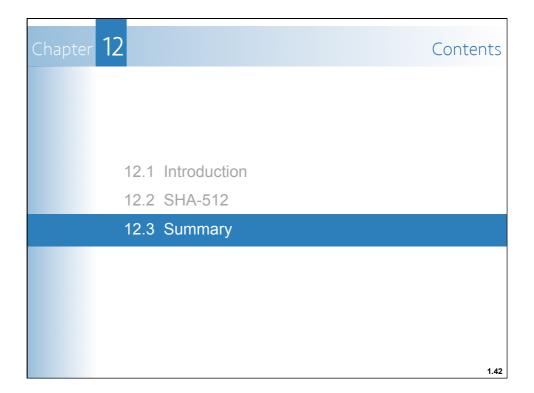


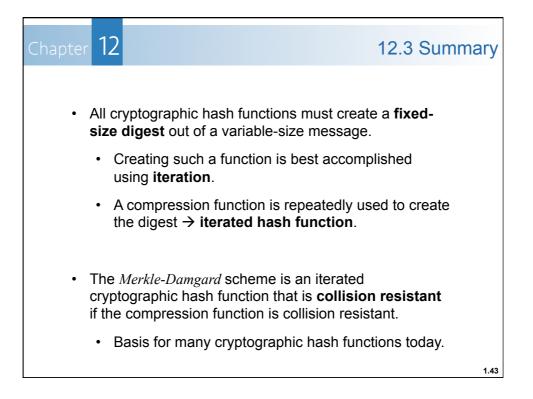


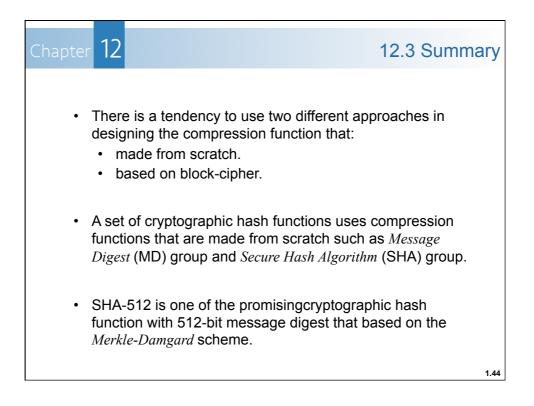

Chapter 12	12.2 SHA-512
Example 12.6:	Show how W_{60} is made.
	Each word in the range W_{16} to W_{79} is made from four previously-made words.
	W_{60} is made as:
	$W_{60} = W_{44} \oplus RotShift_{1-8-7}(W_{45}) \oplus W_{53} \oplus RotShift_{19-61-6}(W_{58})$
	1.31

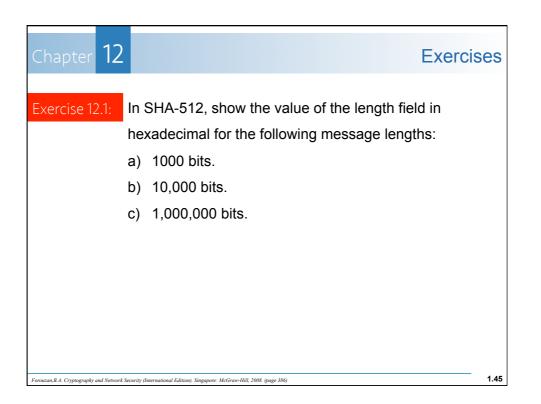

Chapter 12			12.2 SHA-5	12				
Messag	Message Digest Initialization							
	 The algorithm uses eight constant for message digest initialization. 							
	- We call these constants ${\rm A}_0$ to ${\rm H}_0$ to match the word naming used for the digest.							
Table 12.2	Table 12.2 Values of constants in message digest initialization of SHA-512							
Buffer	Value (in hexadecimal)	Buffer	Value (in hexadecimal)					
A ₀	6A09E667F3BCC908	E ₀	510E527FADE682D1					
B ₀	BB67AE8584CAA73B	F ₀	9B05688C2B3E6C1F					
C ₀	3C6EF372EF94F828	G ₀	1F83D9ABFB41BD6B					
D ₀	A54FE53A5F1D36F1	H ₀	5BE0CD19137E2179					
		•	·	1.32				






pter 12			12.2 SHA-8
Table 12.3 Eighty column	onstants used for eighty i	rounds in SHA-512	
428A2F98D728AE22	7137449123EF65CD	B5C0FBCFEC4D3B2F	E9B5DBA58189DBB
3956C25BF348B538	59F111F1B605D019	923F82A4AF194F9B	AB1C5ED5DA6D811
D807AA98A3030242	12835B0145706FBE	243185BE4EE4B28C	550C7DC3D5FFB4E2
72BE5D74F27B896F	80DEB1FE3B1696B1	9BDC06A725C71235	C19BF174CF692694
E49B69C19EF14AD2	EFBE4786384F25E3	0FC19DC68B8CD5B5	240CA1CC77AC9C65
2DE92C6F592B0275	4A7484AA6EA6E483	5CB0A9DCBD41FBD4	76F988DA831153B
983E5152EE66DFAB	A831C66D2DB43210	B00327C898FB213F	BF597FC7BEEF0EE
C6E00BF33DA88FC2	D5A79147930AA725	06CA6351E003826F	142929670A0E6E70
27B70A8546D22FFC	2E1B21385C26C926	4D2C6DFC5AC42AED	53380D139D95B3DB
650A73548BAF63DE	766A0ABB3C77B2A8	81C2C92E47EDAEE6	92722C851482353
A2BFE8A14CF10364	A81A664BBC423001	C24B8B70D0F89791	C76C51A30654BE30
D192E819D6EF5218	D69906245565A910	F40E35855771202A	106AA07032BBD1B
19A4C116B8D2D0C8	1E376C085141AB53	2748774CDF8EEB99	34B0BCB5E19B48A
391C0CB3C5C95A63	4ED8AA4AE3418ACB	5B9CCA4F7763E373	682E6FF3D6B2B8A
748F82EE5DEFB2FC	78A5636F43172F60	84C87814A1F0AB72	8CC702081A6439E0
90BEFFFA23631E28	A4506CEBDE82BDE9	BEF9A3F7B2C67915	C67178F2E372532
CA273ECEEA26619C	D186B8C721C0C207	EADA7DD6CDE0EB1E	F57D4F7FEE6ED178
06F067AA72176FBA	0A637DC5A2C898A6	113F9804BEF90DAE	1B710B35131C471
28DB77F523047D84	32CAAB7B40C72493	3C9EBE0A15C9BEBC	431D67C49C100D4
4CC5D4BECB3E42B6	4597F299CFC657E2	5FCB6FAB3AD6FAEC	6C44198C4A47581


Chapter 12	12.2 SHA-512
Example 12.7:	We apply the Majority function on buffers <i>A</i> , <i>B</i> , and <i>C</i> . If the leftmost hexadecimal digits of these buffers are 0×7 , $0 \times A$, and $0 \times E$, respectively, what is the leftmost digit of the result?
Solution 12.7:	The digits in binary are 0111, 1010, and 1110.
	a. The first bits are 0, 1, and 1. The majority is 1.
	b. The second bits are 1, 0, and 1. The majority is 1.
	c. The third bits are 1, 1, and 1. The majority is 1.
	d. The fourth bits are 1, 0, and 0. The majority is 0.
	The result is 1110, or 0xE in hexadecimal.


Chapter 12		12.2 SHA-512	2		
	If the leftmost h	Conditional function on E, F, and G buffers nexadecimal digits of these buffers are $0 \times F$ respectively, what is the leftmost ult?	i.		
Solution 12.8: The digits in binary are 1001, 1010, and 1111.					
a. The	first bits are	1, 1, and 1. The result is F_1 , which is 1.			
<mark>b</mark> . The	second bits are	e 0, 0, and 1. The result is G_2 , which is 1.			
<mark>c</mark> . The	third bits are	0, 1, and 1. The result is G_3 , which is 1.			
d. The	fourth bits are	1, 0, and 1. The result is F_4 , which is 0.			
The re	sult is 1110, or	0xE in hexadecimal.	.40		

