Hypothesis Testing

Hypothesis testing

- An objective method of making decisions or inferences from sample data (evidence)
- Sample data used to choose between two choices i.e. hypotheses or statements about a population
- We typically do this by comparing what we have observed to what we expected if one of the statements (Null Hypothesis) was true

Hypothesis testing Framework What the text books might say!

- Always two hypotheses:
 - H_A: Research (Alternative) Hypothesis
 - What we aim to gather evidence of
 - Typically that there **is** a difference/effect/relationship etc.
 - H₀: Null Hypothesis
 - What we assume is true to begin with
 - Typically that there is **no** difference/effect/relationship etc.

Discussion

 How could you help a student understand what hypothesis testing is and why they need to use it?

Could try explaining things in the context of "The Court Case"?

• Members of a jury have to decide whether is guilty or innocent based on evidence

Null: The person is innocent

Alternative: The person is not innocent (i.e. guilty)

- The null can only be rejected if there is enough evidence to doubt it
- i.e. the jury can only convict if there is beyond reasonable doubt for the null of innocence
- They do not know whether the person is really guilty or innocent so they may make a mistake

Types of Errors

Steps to undertaking a Hypothesis test

Example: Titanic

- The ship Titanic sank in 1912 with the loss of most of its passengers
- 809 of the 1,309 passengers and crew died
 = 61.8%
- Research question: Did class (of travel) affect survival?

Chi squared Test?

- Null: There is **NO** association between class and survival
- Alternative: There IS an association between

class and survival

	ole
	ta
2	ncy
m	180
	ntir
	ō

Class * Survived? Crosstabulation								
Count								
		Survived?						
			Died	Survived	Total			
Class	1st		123	200	323			
	2nd		158	119	277			
	3rd		528	181	709			
Total			809	500	1309			

What would be expected if the null is true?

- Same proportion of people would have died in each class!
- Overall, 809 people died out of 1309 = 61.8%

What would be expected if the null is true?

- Same proportion of people would have died in each class!
- Overall, 809 people died out of 1309 = 61.8%

Chi-Squared Test Actually Compares Observed and Expected Frequencies

Expected number dying in each class = 0.618 * no. in class

Chi-squared test statistic

- The chi-squared test is used when we want to see if two categorical variables are related
- The test statistic for the Chi-squared test uses the sum of the squared differences between each pair of observed (O) and expected values (E)

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

Using SPSS

Analyse \rightarrow Descriptive Statistics \rightarrow Crosstabs Click on 'Statistics' button & select Chi-squared

Test Statistic = 127.859

Chi-Square Tests

	Value	df	ł	Asymp. Sig. (2-sided)	
Pearson Chi-Square	127.859ª	2		.000	p- value
Likelihood Ratio	127.765	2		.000	p < 0.001
Linear-by-Linear Association	127.709	1		.000	
N of Valid Cases	1309				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 105.81.

Note: Double clicking on the output will display the p-value to more decimal places

Hypothesis Testing: Decision Rule

- We can use statistical software to undertake a hypothesis test e.g. SPSS
- One part of the output is the p-value (P)
- If P < 0.05 reject H₀ => Evidence of H_A being true (i.e. IS association)
- If P > 0.05 do not reject H₀ (i.e. NO association)

Chi squared distribution

- The p-value is calculated using the Chi-squared distribution for this test
- Chi-squared is a skewed distribution which varies depending on the degrees of freedom

What's a p-value? The technical answer!

Probability of getting a test statistic at least as extreme as the one calculated **if the null is true**

In Titanic example, the probability of getting a test statistic of 127.859 or above (**if the null is true**) is < 0.001

Interpretation

But... what is the nature of this association/relationship?

Titanic exercise

Were 'wealthy' people more likely to survive on board the Titanic?

Option 1:

- Choose the right percentages from the next slide to investigate
- Fill in the stacked bar chart with the chosen %'s
- Write a summary to go with the chart

Contingency tables exercise Which percentages are better for investigating whether class

had an effect on survival?

Column

Count

Count

Count

Count

% within Survived?

% within Survived?

% within Survived?

% within Survived?

Class

Total

1st

2nd

3rd

Row

Class * Survived? Crosstabulation

Survi	ved?				Survi			
Died	Survived	Total				Died	Survived	Total
123	200	323	Class	1st	Count	123	200	323
15.2%	40.0%	24.7%			% within Class	38.1%	61.9%	100.0%
158	119	277	2nd		Count	158	119	277
19.5%	23.8%	21.2%			% within Class	57.0%	43.0%	100.0%
528	181	709		3rd	Count	528	181	709
65.3%	36.2%	54.2%			% within Class	74.5%	25.5%	100.0%
809	500	1309	Total		Count	809	500	1309
100.0%	100.0%	100.0%			% within Class	61.8%	38.2%	100.0%

Class * Survived? Crosstabulation

65.3% of those who died were in 3rd class 74.5% of those in 3rd class died

Did class affect survival? Question

Fill in the %'s on the stacked bar chart and interpret

Did class affect survival? Solution

%'s within each class are preferable due to different class frequencies

			survived		
			Died	Survived	Total
pclass	1st	Count	123	200	323
		% within pclass	38.1%	61.9%	100.0%
	2nd	Count	158	119	277
		% within pclass	57.0%	43.0%	100.0%
	3rd	Count	528	181	709
		% within pclass	74.5%	25.5%	100.0%
Total		Count	809	500	1309
		% within pclass	61.8%	38.2%	100.0%

pclass * survived Crosstabulation

Did class affect survival? Solution

Figure 1: Bar chart showing % of passengers surviving within each class

Data collected on 1309 passengers aboard the Titanic was used to investigate whether class had an effect on chances of survival. There was evidence (χ^2_2 =127.86, p < 0.001) to suggest that there is an association between class and survival.

Figure 1 shows that class and chances of survival were related. As class decreases, the percentage of those surviving also decreases from 62% in 1st Class to 26% in 3rd Class.

Low EXPECTED Cell Counts with the Chisquared test

		Di	ed	Survive	d	Tot	al
	1 st Class	20	00	123		32	3
We have no cells with expected counts below 5	2 nd Class	171		106		27	7
	3 rd Class	3 rd Class 43		271		70	9
	Total	Total 809		500	500)9
	Chi-Square Tests						
SPSS Output			Value	df	Asymp. Sig. (2-sided)		
	Pearson Chi-Squ	Pearson Chi-Square		2	.000		
	Likelihood Ratio	Likelihood Ratio		2	.000		
	Linear-by-Linear Association		127.709	1	.000		

a. 0 cells (0.0%) have expected count less than 5. The

1309

minimum expected count is 105.81.

N of Valid Cases

Low Cell Counts with the Chi-squared test

- Check no. of cells with EXPECTED counts less than 5
- SPSS reports the % of cells with an expected count <5
- If more than 20% then the test statistic does not approximate a chi-squared distribution very well
- If any expected cell counts are <1 then cannot use the chi-squared distribution
- In either case if have a 2x2 table use **Fishers' Exact test** (SPSS reports this for 2x2 tables)
- In larger tables (3x2 etc.) combine categories to make cell counts larger (providing it's meaningful)