Hypothesis Testing

Hypothesis testing

- An objective method of making decisions or inferences from sample data (evidence)
- Sample data used to choose between two choices i.e. hypotheses or statements about a population
- We typically do this by comparing what we have observed to what we expected if one of the statements (Null Hypothesis) was true

Hypothesis testing Framework What the text books might say!

- Always two hypotheses:
H_{A} : Research (Alternative) Hypothesis
- What we aim to gather evidence of
- Typically that there is a difference/effect/relationship etc.
H_{0} : Null Hypothesis
- What we assume is true to begin with
- Typically that there is no difference/effect/relationship etc.

Discussion

- How could you help a student understand what hypothesis testing is and why they need to use it?

Could try explaining things in the context of "The Court Case"?

- Members of a jury have to decide whether
 is guilty or innocent based on evidence

Null: The person is innocent
Alternative: The person is not innocent (i.e. guilty)

- The null can only be rejected if there is enough evidence to doubt it
- i.e. the jury can only convict if there is beyond reasonable doubt for the null of innocence
- They do not know whether the person is really guilty or innocent so they may make a mistake

Types of Errors

Steps to undertaking a Hypothesis test

Example: Titanic

- The ship Titanic sank in 1912 with the loss of most of its passengers
- 809 of the 1,309 passengers and crew died = 61.8\%
- Research question: Did class (of travel) affect survival?

Chi squared Test?

- Null:

There is NO association between class and survival

- Alternative: There IS an association between class and survival

Class * Survived? Crosstabulation
Count

		Survived?		Total
	Died	Survived	323	
Class	1st	123	200	277
	2nd	158	119	270
	3rd	528	181	709
		809	500	1309

What would be expected if the null is true?

- Same proportion of people would have died in each class!
- Overall, 809 people died out of $1309=61.8 \%$

What would be expected if the null is true?

- Same proportion of people would have died in each class!
- Overall, 809 people died out of $1309=61.8 \%$

Chi-Squared Test Actually Compares Observed and Expected Frequencies

Expected number dying in each class $=0.618$ * no. in class

Chi-squared test statistic

- The chi-squared test is used when we want to see if two categorical variables are related
- The test statistic for the Chi-squared test uses the sum of the squared differences between each pair of observed (O) and expected values (E)

$$
\chi^{2}=\sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

Using SPSS

Analyse \rightarrow Descriptive Statistics \rightarrow Crosstabs

Click on 'Statistics' button \& select Chi-squared

Test Statistic $=127.859$

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	$127.859^{\text {a }}$	2	. 000	p - value
Likelihood Ratio	127.765	2	. 000	$p<0.001$
Linear-by-Linear Association	127.709	1	. 000	
N of Valid Cases	1309			

Note: Double clicking on the output will display the p -value to more decimal places

Hypothesis Testing: Decision Rule

- We can use statistical software to undertake a hypothesis test e.g. SPSS
- One part of the output is the p -value (P)
- If $\mathrm{P}<0.05$ reject $\mathrm{H}_{0}=>$ Evidence of H_{A} being true (i.e. IS association)
- If $\mathrm{P} \boldsymbol{>} \mathbf{0 . 0 5}$ do not reject H_{0} (i.e. NO association)

Chi squared distribution

- The p-value is calculated using the Chi-squared distribution for this test
- Chi-squared is a skewed distribution which varies depending on the degrees of freedom

> Note: One sample test:
> $v=d f=$ outcomes -1

What's a p-value? The technical answer!

Probability of getting a test statistic at least as extreme as the one calculated if the null is true

In Titanic example, the probability of getting a test statistic of 127.859 or above (if the null is true) is <0.001

Distribution of test statistics

Interpretation

Since $p<0.05$ we reject the null
There is evidence ($\chi_{2}^{2}=127.86, p<0.001$) to suggest that there is an association between class and survival

But... what is the nature of this
 association/relationship?

Titanic exercise

Were 'wealthy' people more likely to survive on board the Titanic?

Option 1:

- Choose the right percentages from the next slide to investigate
- Fill in the stacked bar chart with the chosen \%'s
- Write a summary to go with the chart

Contingency tables exercise
 Which percentages are better for investigating whether class had an effect on survival?

Column

Class * Survived? Crosstabulation

			Survived?		Total
			Died	Survived	
Class	1st	Count	123	200	323
		\% within Survived?	15.2\%	40.0\%	24.7\%
	2nd	Count	158	119	277
		\% within Survived?	19.5\%	23.8\%	21.2\%
	3rd	Count	528	181	709
		\% within Survived?	65.3\%	36.2\%	54.2\%
Total		Count	809	500	1309
		\% within Survived?	100.0\%	100.0\%	100.0\%

Row

Class * Survived? Crosstabulation

			Survived?		
		Died	Survived	Total	
Class	1st	Count	123	200	323
		\% within Class	38.1%	61.9%	100.0%
	2nd	Count	158	119	277
		\% within Class	57.0%	43.0%	100.0%
	3rd	Count	528	181	709
		\% within Class	74.5%	25.5%	100.0%
Total		Count	809	500	1309
		\% within Class	61.8%	38.2%	100.0%

65.3% of those who died were in $3^{\text {rd }}$ class 74.5% of those in $3^{\text {rd }}$ class died

Did class affect survival? Question

Fill in the \%'s on the stacked bar chart and interpret

Did class affect survival? Solution

\%'s within each class are preferable due to different class frequencies
pelass * survived Crosstabulation

			surwiwed		Total
			Died	Survived	
polase	1 st	Count	123	200	323
		\% within pelass	38.1\%	61.9\%	100.0\%
	2nd	Count	158	119	277
		\% within pelass	57.0\%	43.0%	100.0\%
	3 rd	Count	528	181	709
		\% within pelass	74.5%	25.5%	100.0%
Total		Count	809	500	1309
		\% within pelass	61.8\%	38.2\%	100.0%

Did class affect survival? Solution

Figure 1: Bar chart showing \% of passengers surviving within each class

Data collected on 1309 passengers aboard the Titanic was used to investigate whether class had an effect on chances of survival. There was evidence ($\chi_{2}^{2}=127.86, \mathrm{p}<0.001$) to suggest that there is an association between class and survival.

Figure 1 shows that class and chances of survival were related. As class decreases, the percentage of those surviving also decreases from 62% in $1^{\text {st }}$ Class to 26% in $3^{\text {rd }}$ Class.

Low EXPECTED Cell Counts with the Chisquared test

Low Cell Counts with the Chi-squared test

- Check no. of cells with EXPECTED counts less than 5
- SPSS reports the \% of cells with an expected count <5
- If more than 20% then the test statistic does not approximate a chi-squared distribution very well
- If any expected cell counts are <1 then cannot use the chi-squared distribution
- In either case if have a 2×2 table use Fishers' Exact test (SPSS reports this for 2×2 tables)
- In larger tables (3×2 etc.) combine categories to make cell counts larger (providing it's meaningful)

