Standard Deviations and Distributions

Overview

- You should examine the way in which your data on a given variable is distributed
- This is important because many statistical tests assume a 'normal distribution'
- Skewness considers whether the data is mostly to the left, right or central
- Kurtosis considers whether the distribution is particularly flat or steep
- Standard deviation is the variability of the data and is a standard unit of measurement

A Normal Distribution

Figure 6.1 The normal distribution

A Skewed Distribution

Figure 6.2 An example of a skewed distribution

A Flat Distribution

Figure 6.3 A flat frequency distribution

A Steep Distribution

Figure 6.4 A steep frequency distribution

A Frequency Curve

Figure 6.5 A histogram with more data points, making frequency curve fitting a little easier

Influence of Distribution Shape on Tests of Significance

Statistical tests are built on assumptions. A common one is that the scores on a variable are normally distributed - bell-shaped.

Examining the distribution of scores will help indicate where such problems are likely.

> So, departures from the ideal bell shape result in tests of statistical significance not detecting significant differences as well as if the ideal shape was met.

Figure 6.6 The influence of distribution shapes on tests of significance

Standard Deviation (SD)

- The SD is the standard unit of measurement in statistics
- The SD is simply the average amount that the scores on a variable deviate (or differ) from the mean of the set of scores
- The SD is the square root of the variance
- Data can be transformed into z-scores

Calculating SD

Standard deviation is what it says - a standardised way of expressing scores in terms of each score's deviation from the mean of the set of scores.

It is simply the square root of the variance of a set of scores.

The standard deviation that is used in SPSS Statistics is actually the estimated standard deviation. This involves a minor variation in the formula for standard deviation.

The estimated standard deviation is the estimate of the population standard deviation
based on information
from a sample.

Z-scores are scores expressed in terms of the number of standard deviations the score is from the sample mean. Thus a z-score can take a positive or negative value.

Figure 7.2 Steps in standard deviation

Calculating SD using SPSS

- Data
- In Variable View of the Data Editor, 'name' the variables
- In Data View of the Data Editor, enter the data under the appropriate variable names
- Analysis
- Select 'Analyze’, 'Descriptive Statistics’ and 'Descriptives...'
- Move the variables to be analysed to the 'Variable(s):' box
- Select ‘Save standardised values as variables’
- Output
- The standard deviation is presented in a table with other default statistics unless these are de-selecte ${ }_{1}$

Z-Scores

- This is calculated by subtracting the mean from a given value and then dividing this by the SD
- Imagine the mean IQ in a class is 100 and the SD is 10
- A student with an IQ of 120 would have a z-score of (120-100)/10 = 2
- In other words, he/she is 2 SDs above the mean
- Note that all z-scores will have a mean of 0 and an SD of 1

Conclusion

- It is important to study the shape of the distribution of each of your variables
- For most statistical techniques, a symmetrical 'bell-shaped’ distribution is ideal
- You should be wary when working with variables which have highly asymmetrical distributions
- SD assesses variability in the data that can then be converted to z-scores

