Comparing Two Means and Two Proportions

Comparing Two Population Means by Using Independent Samples

- Suppose a random sample has been taken from each of two different populations
- Suppose that the populations are independent of each other
 - Then the random samples are independent of each other
- Then the sampling distribution of the difference in sample means is normally distributed

Sampling Distribution of the Difference of Two Sample Means #1

- Suppose population 1 has mean μ_1 and variance $\sigma_1^{\ 2}$
 - From population 1, a random sample of size n_1 is selected which has mean $x_1^{}$ and variance $s_1^{\ 2}$
- Suppose population 2 has mean μ_2 and variance σ_2^2
 - From population 2, a random sample of size n_2 is selected which has mean x_2 and variance ${s_2}^2$
- Then the sample distribution of the difference of two sample means...

Sampling Distribution of the Difference of Two Sample Means #2

- Is normal, if each of the sampled populations is normal
 - Approximately normal if the sample sizes n_1 and n_2 are large
- Has mean $\mu X_{1-}X_2 = \mu_1 \mu_2$
- Has standard deviation

Sampling Distribution of the Difference of Two Sample Means #3

t-Based Confidence Interval for the Difference in Means: Equal Variances

A 100(1 – α) percent confidence interval for $\mu_1 - \mu_2$ is

$$\left[(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \right] \text{ where } s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

and $t_{\alpha/2}$ is based on $(n_1 + n_2 - 2)$ degrees of freedom.

t-Based Test About the Difference in Means: Equal Variance

Here t_{ar} , $t_{a/2}$, and the *p*-values are based on $n_1 + n_2 - 2$ degrees of freedom.

t-Based Confidence Intervals and t Tests: Unequal Variances

Paired Difference Experiments

- Before, drew random samples from two different populations
- Now, have two different processes (or methods)
- Draw one random sample of units and use those units to obtain the results of each process

Paired Difference Experiments Continued

- For instance, use the same individuals for the results from one process vs. the results from the other process
 - E.g., use the same individuals to compare "before" and "after" treatments
- Using the same individuals, eliminates any differences in the individuals themselves and just comparing the results from the two processes

Paired Difference Experiments #3

- Let μ_d be the mean of population of paired differences
 - $\mu_d = \mu_1 \mu_2$, where μ_1 is the mean of population 1 and μ_2 is the mean of population 2
- Let d and s_d be the mean and standard deviation of a sample of paired differences that has been randomly selected from the population
 - d is the mean of the differences between pairs of values from both samples

t-Based Confidence Interval for Paired Differences in Means

- If the sampled population of differences is normally distributed with mean μ_{d}
- A (1- α)100% confidence interval for $\mu_{d} = \mu_{1} - \mu_{2}$ is... $\left[\overline{d} \pm t_{\alpha/2} \frac{S_{d}}{\sqrt{n}} \right]$
- where for a sample of size n, $t_{\alpha/2}$ is based on n 1 degrees of freedom

Test Statistic for Paired Differences

Comparing Two Population Proportions by Using Large, Independent Samples

- Select a random sample of size n_1 from a population, and let \hat{p}_1 denote the proportion of units in this sample that fall into the category of interest
- Select a random sample of size n_2 from another population, and let \hat{p}_2 denote the proportion of units in this sample that fall into the same category of interest
- Suppose that n₁ and n₂ are large enough
 - $n_1 \cdot p_1 \ge 5$, $n_1 \cdot (1 p_1) \ge 5$, $n_2 \cdot p_2 \ge 5$, and $n_2 \cdot (1 p_2) \ge 5$

Comparing Two Population Proportions Continued

- Then the population of all possible values of $\hat{p}_1 \hat{p}_2$
- Has approximately a normal distribution if each of the sample sizes n_1 and n_2 is large
 - Here, n_1 and n_2 are large enough so $n_1 \cdot p_1 \ge 5$, $n_1 \cdot (1 - p_1) \ge 5$, $n_2 \cdot p_2 \ge 5$, and $n_2 \cdot (1 - p_2) \ge 5$
- Has mean $\mu_{\hat{p}1 \hat{p}2} = p_1 p_2$
- Has standard deviation

$$\sigma_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

Confidence Interval for the Difference of Two Population Proportions

If the random samples are independent of each other, then the following is a 100(1 – Ω) percent confidence interval for $\hat{p}_1 - \hat{p}_2$

$$\left[(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} \right]$$

Test Statistic for the Difference of Two Population Proportions

Null Hypothesis $H_0: p_1 - p_2 = D_0$	Test Statistic $z = \frac{(\hat{p}_1 - \sigma)}{\sigma}$	<u>(</u> \hat{p}_2) — D_0 $\hat{p}_1 - \hat{p}_2$	Inc Assumptions L	lependent samples and arge sample sizes
Critical Value Rule		<i>p</i> -Value (Reject H_0 if <i>p</i> -Value < α)		
$H_a: p_1 - p_2 > D_0$ $H_a: p_1 - p_2 < D_0$	$H_a: p_1 - p_2 \neq D_0$	$H_a: p_1 - p_2 > D_0$	$H_a: p_1 - p_2 < D_0$	$H_a: p_1 - p_2 \neq D_0$
Do not Reject Reject Do not reject H_0 H_0 reject H_0 A_0 reject H_0 A_0 H_0 reject H_0 A_0 A_0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>p</i> -value 0 <i>z</i> <i>p</i> -value = area to the right of <i>z</i>	<i>p</i> -value <i>z</i> 0 <i>p</i> -value = area to the left of <i>z</i>	-IZI 0 IZI p-value = twice the area to the right of IZI
$s_{\hat{p}_1-\hat{p}_2} = \sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1}+\frac{1}{n_2}\right)}$				
$s_{\hat{p}_1-\hat{p}_2} = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$				