Comparing Two Means and Two Proportions

Comparing Two Population Means by Using Independent Samples

- Suppose a random sample has been taken from each of two different populations
- Suppose that the populations are independent of each other
- Then the random samples are independent of each other
- Then the sampling distribution of the difference in sample means is normally distributed

Sampling Distribution of the Difference of Two Sample Means \#1

- Suppose population 1 has mean μ_{1} and variance $\sigma_{1}{ }^{2}$
- From population 1, a random sample of size n_{1} is selected which has mean x_{1} and variance $\mathrm{s}_{1}{ }^{2}$
- Suppose population 2 has mean μ_{2} and variance $\sigma_{2}{ }^{2}$
- From population 2, a random sample of size n_{2} is selected which has mean x_{2} and variance $\mathrm{s}_{2}{ }^{2}$
- Then the sample distribution of the difference of two sample means...

Sampling Distribution of the Difference of Two Sample Means \#2

- Is normal, if each of the sampled populations is normal
- Approximately normal if the sample sizes n_{1} and n_{2} are large
- Has mean $\mu \mathrm{X}_{1-} \mathrm{X}_{2}=\mu_{1}-\mu_{2}$
- Has standard deviation

$$
\sigma_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

Sampling Distribution of the Difference of Two Sample Means \#3

t-Based Confidence Interval for the Difference in Means: Equal Variances

A 100(1 $-\alpha$) percent confidence interval for $\mu_{1}-\mu_{2}$ is
$\left[\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\alpha / 2} \sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}\right]$ where $s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}$
and $t_{\alpha / 2}$ is based on $\left(n_{1}+n_{2}-2\right)$ degrees of freedom.

t-Based Test About the Difference in Means: Equal Variance

```
Null
Hypothesis }\mp@subsup{H}{0}{}:\mp@subsup{\mu}{1}{}-\mp@subsup{\mu}{2}{}=\mp@subsup{D}{0}{
Test 
```

Assumptions
Independent samples
and
Equal variances
and either
Normal populations
or
Large sample sizes

Critical Value Rule			p-Value (Reject H_{0} if p-Value $<\alpha$)		
$H_{2}: \mu_{1}-\mu_{2}>D_{0}$	$H^{2}: \mu_{1}-\mu_{2}<D_{0}$	$H_{a}: \mu_{1}-\mu_{2} \neq D_{0}$	$H_{a}: \mu_{1}-\mu_{2}>D_{0}$	$H_{a}: \mu_{1}-\mu_{2}<D_{0}$	$H^{2}: \mu_{1}-\mu_{2} \neq D_{0}$
$\begin{gathered} 0 t_{\alpha} \\ \text { Reject } H_{0} \text { if } \\ t>t_{\alpha} \end{gathered}$	$-t_{\alpha} 0$ Reject H_{0} if $t<-t_{\alpha}$	$-t_{\omega / 2} 00 \quad t_{\omega / 2}$ Reject H_{0} if $\|t\|>t_{\alpha / 2}$-that is, $t>t_{\alpha / 2}$ or $t<-t_{\alpha / 2}$	$\begin{gathered} 0 \quad t \\ p \text {-value = area } \\ \text { to the right of } t \end{gathered}$	$t \quad 0$ p-value $=$ area to the left of t	$-\|t\| \quad 0 \quad\|t\|$ p-value $=$ twice the area to the right of $\|t\|$

Here $t_{a,} t_{a / 2}$ and the p-values are based on $n_{1}+n_{2}-2$ degrees of freedom.

t-Based Confidence Intervals and t Tests: Unequal Variances

Paired Difference Experiments

- Before, drew random samples from two different populations
- Now, have two different processes (or methods)
- Draw one random sample of units and use those units to obtain the results of each process

Paired Difference Experiments continued

- For instance, use the same individuals for the results from one process vs. the results from the other process
- E.g., use the same individuals to compare "before" and "after" treatments
- Using the same individuals, eliminates any differences in the individuals themselves and just comparing the results from the two processes

Paired Difference Experiments \#3

- Let μ_{d} be the mean of population of paired differences
- $\mu_{d}=\mu_{1}-\mu_{2}$, where μ_{1} is the mean of population 1 and μ_{2} is the mean of population 2
- Let d and s_{d} be the mean and standard deviation of a sample of paired differences that has been randomly selected from the population
- d is the mean of the differences between pairs of values from both samples

t-Based Confidence Interval for Paired Differences in Means

- If the sampled population of differences is normally distributed with mean μ_{d}
- A (1- α) 100% confidence interval for $\mu_{d}=\mu_{1}-\mu_{2}$ is...

$$
\left[\bar{d} \pm t_{\alpha / 2} \frac{s_{d}}{\sqrt{n}}\right]
$$

- where for a sample of size $n, t_{\alpha / 2}$ is based on $n-1$ degrees of freedom

Test Statistic for Paired Differences

```
Null
Hypothesis }\mp@subsup{H}{0}{}:\mp@subsup{\mu}{d}{}=\mp@subsup{D}{0}{
```

Test
Statistic $\quad t=\frac{a-D_{0}}{s_{d} / \sqrt{n}} \quad d f=n-1$

Normal population of paired differences
or
Large sample size

Critical Value Rule			p-Value (Reject H_{0} if p-Value $<\alpha$)		
$H_{a}: \mu_{d}>D_{0}$	$H_{3}: \mu_{d}<D_{0}$	$H_{a}: \mu_{d} \neq D_{0}$	$H_{a}: \mu_{d}>D_{0}$	$H_{a}: \mu_{d}<D_{0}$	$H_{a}: \mu_{d} \neq D_{0}$
Reject H_{0} if $t>t_{\alpha}$	$\begin{aligned} & -t_{\alpha} 0 \\ & \text { Reject } H_{0} \text { if } \\ & t<-t_{\alpha} \end{aligned}$	$-t_{\alpha / 2}$ 0 $t_{\alpha / 2}$ Reject H_{0} if $\|t\|>t_{\omega / 2}$-that is, $t>t_{\omega / 2}$ or $t<-t_{\alpha / 2}$	p-value $=$ area to the right of t	p-value $=$ area to the left of t	$-\|t\| \quad 0 \quad\|t\|$ p-value $=$ twice the area to the right of $\|t\|$

Comparing Two Population Proportions by Using Large, Independent Samples

- Select a random sample of size n_{1} from a population, and let $\hat{\mathrm{p}}_{1}$ denote the proportion of units in this sample that fall into the category of interest
- Select a random sample of size n_{2} from another population, and let $\hat{\mathrm{p}}_{2}$ denote the proportion of units in this sample that fall into the same category of interest
- Suppose that n_{1} and n_{2} are large enough
- $n_{1} \cdot p_{1} \geq 5, n_{1} \cdot\left(1-p_{1}\right) \geq 5, n_{2} \cdot p_{2} \geq 5$, and $n_{2} \cdot\left(1-p_{2}\right) \geq 5$

Comparing Two Population Proportions continued

- Then the population of all possible values of $\hat{p}_{1}-\hat{p}_{2}$
- Has approximately a normal distribution if each of the sample sizes n_{1} and n_{2} is large
- Here, n_{1} and n_{2} are large enough so $n_{1} \cdot p_{1} \geq 5$,

$$
n_{1} \cdot\left(1-p_{1}\right) \geq 5, n_{2} \cdot p_{2} \geq 5, \text { and } n_{2} \cdot\left(1-p_{2}\right) \geq 5
$$

- Has mean $\mu_{\hat{p} 1-\hat{p} 2}=p_{1}-p_{2}$
- Has standard deviation

$$
\sigma_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}
$$

Confidence Interval for the Difference of Two Population Proportions

If the random samples are independent of each other, then the following is a $100(1-\alpha)$ percent confidence interval for $\hat{p}_{1}-\hat{p}_{2}$

$$
\left[\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}\right]
$$

Test Statistic for the Difference of Two Population Proportions

Null
Hypothesis $H_{0}: p_{1}-p_{2}=D_{0}$

Test
Statistic $\quad z=\frac{\left(\hat{\rho}_{1}-\hat{p}_{2}\right)-D_{0}}{\sigma_{\hat{A}}-\hat{\rho}_{2}}$

Independent samples
Assumptions
and
Large sample sizes

$s_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}$
$s_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}$

