Hypothesis Testing

Null and Alternative Hypotheses and Errors in Hypothesis Testing

- Null hypothesis, H₀, is a statement of the basic proposition being tested
 - Represents the status quo and is not rejected unless there is convincing sample evidence that it is false
- Alternative hypothesis, H_a, is an alternative accepted only if there is convincing sample evidence it is true
- One-Sided, "Greater Than" H_0 : $\mu \le \mu_0$ vs. H_a : $\mu > \mu_0$
- One-Sided, "Less Than" $H_0: \mu \ge \mu_0 \text{ vs. } H_a: \mu < \mu_0$
- Two-Sided, "Not Equal" $H_0 : \mu = \mu_0 vs. H_a : \mu \neq \mu_0$ where μ_0 is a given constant value (with the appropriate units) that is a comparative value

Types of Decisions

- As a result of testing H_0 vs. H_a , will decide either of the following decisions for the null hypothesis H_0 :
 - Do not reject H₀ or reject H₀
- To "test" H₀ vs. H_a, use the "test statistic"

$$z = \frac{\overline{x} - \mu_0}{\sigma_{\overline{x}}} = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$$

- z measures the distance between μ_0 and x on the sampling distribution of the sample mean
- If the population is normal or n is large*, the test statistic z follows a normal distribution

Error Probabilities

- Type I Error: Rejecting H₀ when it is true
 - + α is the probability of making a Type I error
 - + 1 α is the probability of not making a Type I error
- Type II Error: Failing to reject H₀ when it is false
 - $\boldsymbol{\beta}$ is the probability of making a Type II error
 - $1-\beta$ is the probability of not making a Type II error

	State of Nature		
Decision	H_0 : $\mu \leq 50$ True	H_0 : $\mu \leq 50$ False	
Reject H_0 : $\mu \leq 50$	Type I error	Correct decision	
Do not reject H_0 : $\mu \leq 50$	Correct decision	Type II error	

Typical Values

- \bullet Usually set α to a low value
 - So there is a small chance of rejecting a true H₀
- Typically, α = 0.05
 - Strong evidence is required to reject H₀
 - Usually choose α between 0.01 and 0.05
 - α = 0.01 requires very strong evidence to reject H₀
- Tradeoff between α and β
 - For fixed sample size, the lower α , the higher β
 - And the higher α , the lower β

z Tests about a Population Mean: σ Known

- Test hypotheses about a population mean using the normal distribution
- Called z tests
- Require that the true value of the population standard deviation $\boldsymbol{\sigma}$ is known
 - In most real-world situations, σ is not known
 - But often is estimated from s of a single sample
 - When σ is unknown, test hypotheses about a population mean using the t distribution
 - Here, assume that we know $\boldsymbol{\sigma}$

Steps in Testing a "Greater Than" Alternative

- 1. State the null and alternative hypotheses
- 2. Specify the significance level α
- 3. Select the test statistic
- 4. Determine the critical value rule for deciding whether or not to reject H_0
- 5. Collect the sample data and calculate the value of the test statistic
- 6. Decide whether to reject H_0 by using the test statistic and the rejection rule
- 7. Interpret the statistical results in managerial terms and assess their practical importance

- 1. State the null and alternative hypotheses $H_0: \mu \le 50$ $H_a: \mu > 50$
- 2. Specify the significance level $\boldsymbol{\alpha}$
 - α = 0.05
- 3. Select the test statistic
 - Use the test statistic

$$z = \frac{\overline{x} - 50}{\sigma_{\overline{x}}} = \frac{\overline{x} - 50}{\sigma/\sqrt{n}}$$

• A positive value of this this test statistic results from a sample mean that is greater than 50 lbs

- 4. Determine the rejection rule for deciding whether or not to reject H_0
 - To decide how large the test statistic must be to reject H₀ by setting the probability of a Type I error to α, do the following:
 - The probability α is the area in the right-hand tail of the standard normal curve
 - Use the normal table to find the point z_{α} (called the rejection or critical point)
 - Reject H_0 in favor of H_a if the test statistic z is greater than the rejection point z_{α}
 - In the trash bag case, the rejection rule is to reject H_0 if the calculated test statistic z is > 1.645

- 5. Collect the sample data and calculate the value of the test statistic
 - In the trash bag case, assume that σ is known and $\sigma = 1.65$ lbs
 - For a sample of n = 40, $\boxtimes = 50.575$ lbs. Then

$$z = \frac{\bar{x} - 50}{\sigma/\sqrt{n}} = \frac{50.575 - 50}{1.65/\sqrt{40}} = 2.20$$

- 6. Decide whether to reject H_0
 - Compare the value of the test statistic to the rejection point according to the rejection rule
 - Here, z = 2.20 is greater than $z_{0.05} = 1.645$
 - Therefore reject $H_0: \mu \le 50$ in favor of $H_a: \mu > 50$ at the 0.05 significance level
- 7. Interpret the statistical results
 - Conclude mean breaking strength of new bag exceeds 50 lbs

Effect of α

- At α = 0.01, the rejection point is $z_{0.01}$ = 2.33
- In the trash example, the test statistic z = 2.20 is $< z_{0.01} = 2.33$
- Therefore, cannot reject H_0 in favor of H_a at the α = 0.01 significance level
 - This is the opposite conclusion reached with α =0.05
 - So, the smaller we set α , the larger is the rejection point, and the stronger is the statistical evidence that is required to reject the null hypothesis H₀

The p-Value

- The p-value or the observed level of significance is the probability of obtaining the sample results if the null hypothesis H₀ is true
 - The p-value is used to measure the weight of the evidence against the null hypothesis
- Sample results that are not likely if H₀ is true have a low p-value and are evidence that H₀ is not true
 - The p-value is the smallest value of α for which we can reject H_0
- The p-value is an alternative to testing with a z test statistic

Steps Using a p-value to Test a "Greater Than" Alternative

- 4. Collect the sample data and compute the value of the test statistic
 - In the trash bag case, the value of the test statistic was calculated to be z
 = 2.20
- 5. Calculate the p-value by corresponding to the test statistic value
 - In the trash bag case, the area under the standard normal curve in the right-hand tail to the right of the test statistic value z = 2.20
 - The area is 0.5 0.4861 = 0.0139
 - The p-value is 0.0139

Steps Using a p-value to Test a "Greater Than" Alternative Continued

- 5. Continued
 - If H₀ is true, the probability is 0.0139 of obtaining a sample whose mean is 50.575 lbs or higher
 - This is so low as to be evidence that H_0 is false and should be rejected
- 6. Reject H_0 if the p-value is less than α
 - In the trash bag case, α was set to 0.05
 - The calculated p-value of 0.0139 is $< \alpha = 0.05$
 - This implies that the test statistic z = 2.20 is greater than the rejection point $z_{0.05} = 1.645$
 - Therefore reject H_0 at the α = 0.05 significance level

Steps in Testing a "Less Than" Alternative in Payment Time Case #1

- 1. State the null and alternative hypotheses
 - In the payment time case, $H_0: \mu \ge 19.5 \text{ vs. } H_a: \mu < 19.5$, where μ is the mean bill payment time (in days)
- 2. Specify the significance level α
 - In the payment time case, set $\alpha = 0.01$
- 3. Select the test statistic
 - In the payment time case, use the test statistic $z = \frac{\overline{x} 19.5}{\sigma_{\overline{x}}} = \frac{\overline{x} 19.5}{\sigma/\sqrt{n}}$
 - A negative value of this this test statistic results from a sample mean that is less than 19.5 days

Steps in Testing a "Less Than" Alternative in Payment Time Case #2

- 4. Determine the critical value rule
 - Decide how much less than 0 test statistic must be to reject H_0 with probability of α
 - The probability α is the area in the left-hand tail of the standard normal curve
 - Use standard normal table to find the rejection point $-z_{\alpha}$
 - Since $\alpha = 0.01$ in the payment time case, the rejection point is $-z_{\alpha} = -z_{0.01} = -2.33$
 - Reject H_0 in favor of H_a if the test statistic z is calculated to be less than the rejection point $-z_{\alpha}$
 - In the payment time case, reject H₀ if the test statistic –z is less than –2.33

Steps in Testing a "Less Than" Alternative in Payment Time Case #3

- 5. Collect the sample data and calculate the value of the test statistic
 - In the payment time case, assume that σ is known and σ = 4.2 days
 - For a sample of n=65, \boxtimes = 18.1077 days:

$$z = \frac{\bar{x} - 19.5}{\sigma/\sqrt{n}} = \frac{18.1077 - 19.5}{4.2/\sqrt{65}} = -2.67$$

Steps in Testing a "Less Than" Alternative in Payment Time Case #4

- 6. Decide whether to reject H_0 by using the test statistic and the rejection rule
 - Compare the value of the test statistic to the rejection point according to the rejection rule
 - In the payment time case, z = -2.67 is less than $z_{0.01} = 2.33$
 - Therefore reject H_0 : $\mu \ge 19.5$ in favor of H_a : $\mu < 19.5$ at the 0.01 significance level
- 7. Interpret the statistical results in managerial terms and assess their practical importance
 - Can conclude that the mean bill payment time of the new billing system is less than 19.5 days

Steps Using a p-value to Test a "Less Than" Alternative

(Steps 1–3 are the same)

- 4. Collect the sample data and compute the value of the test statistic
 - In the payment time case, the value of the test statistic was calculated to be z = -2.67
- 5. Calculate the p-value by corresponding to the test statistic value
 - In the payment time case, the area under the standard normal curve in the left-hand tail to the left of the test statistic z = -2.67
 - The area is = 0.0038
 - The p-value is 0.0038

Steps Using a p-value to Test a "Less Than" Alternative Continued

5. Continued

- If H₀ is true, then the probability is 0.0038 of obtaining a sample whose mean is as low as 18.1077 days or lower
- This is so low as to be evidence that H_0 is false and should be rejected
- 6. Reject H_0 if the p-value is less than α
 - In the payment time case, α was 0.01
 - The calculated p-value of 0.0038 is $< \alpha = 0.01$
 - This implies that the test statistic z = -2.67 is less than the rejection point $-z_{0.01} = -2.33$
 - Therefore, reject H_0 at the α = 0.01 significance level

 $\sigma_{\bar{r}}$

- State null and alternative hypotheses 1.
 - In case, H_0 : $\mu = 330$ vs. H_a : $\mu \neq 330$
- Specify the significance level α 2.
 - In the case, set $\alpha = 0.05$
- Select the test statistic 3.
 - $z = \frac{\bar{x} 330}{\sigma} = \frac{\bar{x} 330}{\sigma/\sqrt{n}}$ Positive value results from X greater than 330
 - Negative value results from X less than 330
 - Value close to 0 results from X nearly 330 ٠

- 4. Determine the critical value rule for deciding whether or not to reject H_0
 - Decide how much less than 0 test statistic must be to reject ${\rm H}_0$ with probability of α
 - Use normal table to find the rejection points $z_{\alpha/2}$ and $z_{\alpha/2}$
 - $z_{\alpha/2}$ is the point on the horizontal axis under the standard normal curve that gives a right-hand tail area equal to $\alpha/2$
 - $-z_{\alpha/2}$ is the point on the horizontal axis under the standard normal curve that gives a left-hand tail area equal to $\alpha/2$

- 4. Continued
 - Because $\alpha = 0.05$, $\alpha/2=0.025$
 - The area under the standard normal to the left of the mean is 0.5 + 0.025 = 0.525
 - From normal table, the area is 0.525 for z = 1.96
 - Rejection points are $z_{\alpha} = 1.96$, $-z_{\alpha} = -1.96$
 - Reject H_0 in favor of H_a if the test statistic z satisfies either:
 - z greater than the rejection point $z_{\alpha/2}$, or
 - -z less than the rejection point $-z_{\alpha/2}$
 - This is the rejection rule

- 5. Collect the sample data and calculate the value of the test statistic
 - In the Valentine Day case, assume that σ is known and $\sigma = 40$
 - For a sample of n = 100, x = 326
 - Then

$$z = \frac{\bar{x} - 330}{\sigma/\sqrt{n}} = \frac{326 - 330}{40/\sqrt{100}} = -1.00$$

- 6. Decide whether to reject H_0 by using the test statistic and the rejection rule
 - Compare the value of the test statistic to the rejection point according to the rejection rule
 - In this case, -z = -1.00 is $< -z_{0.025} = -1.96$
 - Therefore cannot reject H₀: µ = 330 in favor of H_a: µ ≠ 330 at the 0.05 significance level
- 7. Interpret the statistical results in managerial terms and assess their practical importance
 - Cannot conclude that the mean order quantity this year of the Valentine Day box at large retail stores will differ from 330 boxes

Steps Using a p-value to Test a "Not Equal To" Alternative

(Steps 1–3 are the same)

- 4. Collect the sample data and compute the value of the test statistic
 - In the Valentine Day case, the value of the test statistic was calculated to be z = -1.00
- 5. Calculate the p-value by corresponding to the test statistic value
 - In the Valentine Day case, the area under the standard normal curve in the left-hand tail to the left of the test statistic value z = -1.00
 - The area is 0.1587
 - The p-value is 0.1587 · 2 = 0.3174

Steps Using a p-value to Test a "Not Equal To" Alternative Continued

- 5. Continued
 - That is, if H₀ is true, probability is 0.3174 of obtaining a sample whose mean is at least as extreme as 326
 - This probability is not so low as to be evidence that _{H0} is false and should be rejected
- 6. Reject H_0 if the p-value is less than a
 - In the Valentine Day case, α was 0.05
 - Calculated p-value of 0.3174 is greater than α
 - This implies that the test statistic z = -1.00 is greater than the rejection point $-z_{0.025} = -1.96$
 - Therefore do not reject H_0 at the α = 0.05 significance level

t Tests about a Population Mean: σ Unknown

- Assume the population being sampled is normally distributed
- The population standard deviation σ is unknown, as is the usual situation
 - If the population standard deviation σ is unknown, then it will have to estimated from a sample standard deviations
- Under these two conditions, have to use the t distribution to test hypotheses

Defining the t Statistic: σ Unknown

- Let x be the mean of a sample of size n with standard deviation s
- \bullet Also, μ_0 is the claimed value of the population mean
- Define a new test statistic

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

- If the population being sampled is normal, and s is used to estimate σ , then ...
- The sampling distribution of the t statistic is a t distribution with n – 1 degrees of freedom

t Tests about a Population Mean: σ Unknown

Alternative	Reject H ₀ if:	p-value
$H_a: \mu > \mu_0$	$t > t_{\alpha}$	Area under t distribution to right of t
$H_a: \mu < \mu_0$	$t < -t_{\alpha}$	Area under t distribution to left of –t
$H_a: \mu \neq \mu_0$	$ t > t_{\alpha/2}^{*}$	Twice area under t distribution to right of t

 t_{α} , $t_{\alpha/2}$, and p-values are based on n-1 degrees of freedom (for a sample of size n)

* either $t > t_{\alpha/2}$ or $t < -t_{\alpha/2}$

z Tests about a Population Proportion

Alternative Reject H_0 if: p-value

 $H_a: \rho > \rho_0 \qquad z > z_\alpha$

 $H_a: \rho < \rho_0 \qquad z < -z_\alpha$

 $H_a: \rho \neq \rho_0 \qquad |z| > z_{\alpha/2}^*$

Where the test statistics is

* either $z > z_{\alpha/2}$ or $z < -z_{\alpha/2}$

- Area under t distribution to left of -z
- Twice area under t distribution to right of |z|

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

Selecting an Appropriate Test Statistic for a Test about a Population Mean

