### Simple Linear Regression Analysis

0

#### The Simple Linear Regression Model and the Least Squares Point Estimates

- The **dependent** (or response) variable is the variable we wish to understand or predict
- The **independent** (or predictor) variable is the variable we will use to understand or predict the dependent variable
- **Regression analysis** is a statistical technique that uses observed data to relate the dependent variable to one or more independent variables
- The objective is to build a regression model that can describe, predict and control the dependent variable based on the independent variable

### Form of The Simple Linear Regression Model

- $y = \beta_0 + \beta_1 x + \epsilon$
- $\mu_y = \beta_0 + \beta_1 x + \varepsilon$  is the mean value of the dependent variable y when the value of the independent variable is x
- $\beta_0$  is the y-intercept; the mean of y when x is 0
- β<sub>1</sub> is the slope; the change in the mean of y per unit change in x
- ε is an error term that describes the effect on y of all factors other than x



### **Regression Terms**

- $\beta_0$  and  $\beta_1$  are called regression parameters
- $\beta_0$  is the y-intercept and  $\beta_1$  is the slope
- We do not know the true values of these parameters
- So, we must use sample data to estimate them
- $b_0$  is the estimate of  $\beta_0$  and  $b_1$  is the estimate of  $\beta_1$

### The Simple Linear Regression Model Illustrated

0



### The Least Squares Point Estimates

- Estimation/prediction equation  $\hat{y} = b_0 + b_1 x$
- Least squares point estimate of the slope  $\beta_1$   $b_1 = \frac{SS_{xy}}{SS_{xx}}$  $SS_{xy} = \sum (x_i - \overline{x})(y_i - \overline{y}) = \sum x_i y_i - \frac{(\sum x_i)(\sum y_i)}{n}$

$$SS_{xx} = \sum (x_i - \bar{x})^2 = \sum x_i^2 - \frac{(\sum x_i)^2}{n}$$

• Least squares point estimate of y-intercept  $\beta_0$ 

$$b_0 = \overline{y} - b_1 \overline{x}$$
  $\overline{y} = \frac{\sum y_i}{n}$   $\overline{x} = \frac{\sum x_i}{n}$ 

### The Tasty Sub Shop Case #1

| Уi                  | X <sub>i</sub>     | $x_i^2$                        | x <sub>i</sub> y <sub>i</sub> |
|---------------------|--------------------|--------------------------------|-------------------------------|
| 527.1               | 20.8               | $(20.8)^2 = 432.64$            | (20.8)(527.1) = 10963.68      |
| 548.7               | 27.5               | $(27.5)^2 = 756.25$            | (27.5)(548.7) = 15089.25      |
| 767.2               | 32.3               | (32.3) <sup>2</sup> = 1,043.29 | (32.3)(767.2) = 24780.56      |
| 722.9               | 37.2               | (37.2) <sup>2</sup> = 1,383.84 | (37.2)(722.9) = 26891.88      |
| 826.3               | 39.6               | (39.6) <sup>2</sup> = 1,568.16 | (39.6)(826.3) = 32721.48      |
| 810.5               | 45.1               | (45.1) <sup>2</sup> = 2,034.01 | (45.1)(810.5) = 36553.55      |
| 1040.7              | 49.9               | $(49.9)^2 = 2,490.01$          | (49.9)(1040.7) = 51930.93     |
| 1033.6              | 55.4               | (55.4) <sup>2</sup> = 3,069.16 | (55.4)(1033.6) = 57261.44     |
| 1090.3              | 61.7               | (61.7) <sup>2</sup> = 3,806.89 | (61.7)(1090.3) = 67271.51     |
| 1235.8              | 64.6               | $(64.6)^2 = 4,173.16$          | (64.6)(1235.8) = 79832.68     |
| $\sum y_i = 8603.1$ | $\sum x_i = 434.1$ | $\sum x_i^2 = 20,757.41$       | $\sum x_i y_i = 403,296.96$   |

### The Tasty Sub Shop Case #2

- From last slide,
  - $\Sigma y_i = 8,603.1$
  - $\Sigma x_i = 434.1$
  - $\Sigma x_{i}^{2} = 20,757.41$
  - $\Sigma x_i y_i = 403,296.96$
- Once we have these values, we no longer need the raw data
- Calculation of b<sub>0</sub> and b<sub>1</sub> uses these totals

### The Tasty Sub Shop Case #3 (Slope b<sub>1</sub>)

$$SS_{xy} = \sum x_i y_i - \frac{\left(\sum x_i\right)\left(\sum y_i\right)}{n}$$
  
= 403,296.96 -  $\frac{(434.1)(8,603.1)}{10}$  = 29,836.389  
$$SS_{xx} = \sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n}$$
  
= 120,757.41 -  $\frac{(434.1)^2}{10}$  = 1,913.129

$$b_1 = \frac{SS_{xy}}{SS_{xx}} = \frac{29,836.389}{1,913.129} = 15.596$$

### The Tasty Sub Shop Case #4 (y-Intercept $b_0$ )

$$\overline{y} = \frac{\sum y_i}{n} = \frac{8,603.1}{10} = 860.31$$
$$\overline{x} = \frac{\sum x_i}{n} = \frac{434.1}{10} = 43.41$$

$$b_0 = \overline{y} - b_1 \overline{x}$$
  
= 860.31 - (15.596)(43.41)  
= 183.31



- Prediction (x = 20.8)
- $\hat{y} = b_0 + b_1 x = 183.31 + (15.59)(20.8)$
- ŷ = 507.69
- Residual is 527.1 507.69 = 19.41

Figure 14.5

0

## Model Assumptions and the Standard Error

1. Mean of Zero

At any given value of x, the population of potential error term values has a mean equal to zero

2. Constant Variance Assumption

At any given value of x, the population of potential error term values has a variance that does not depend on the value of x

#### **3.** Normality Assumption

At any given value of x, the population of potential error term values has a normal distribution

#### 4. Independence Assumption

Any one value of the error term  $\varepsilon$  is statistically independent of any other value of  $\varepsilon$ 





### Sum of Squares

- Sum of squared errors  $SSE = \sum e_i^2 = \sum (y_i - \hat{y}_i)^2$
- Mean square error
  - $\circ\,$  Point estimate of the residual variance  $\sigma^2$

$$s^2 = MSE = \frac{SSE}{n-2}$$

- Standard error
  - $\circ$  Point estimate of residual standard deviation  $\sigma$

$$s = \sqrt{MSE} = \sqrt{\frac{SSE}{n-2}}$$

# Testing the Significance of the Slope and y-Intercept

- A regression model is not likely to be useful unless there is a significant relationship between x and y
- To test significance, we use the null hypothesis:

H0:  $\beta_1 = 0$ 

• Versus the alternative hypothesis:

Ha:  $\beta_1 \neq 0$ 

| Testing the #2        | e Significai                   | nce of the Slope                               |
|-----------------------|--------------------------------|------------------------------------------------|
| <u>Alternative</u>    | <u>Reject H<sub>0</sub> If</u> | <u><i>p</i>-Value</u>                          |
| $H_a: \beta_1 > 0$    | $t > t_{\alpha}$               | Area under t distribution right of t           |
| $H_a: \beta_1 < 0$    | $t < -t_{\alpha}$              | Area under t distribution left of t            |
| $H_a: \beta_1 \neq 0$ | $ t  > t_{\alpha/2}^{*}$       | Twice area under t<br>distribution right of  t |

\* That is  $t > t_{\alpha/2}$  or  $t < -t_{\alpha/2}$ 

Testing the Significance of the Slope #3

• Test Statistics  $t = \frac{b_1}{s_{b_1}}$  where  $s_{b_1} = \frac{s}{\sqrt{SS_{xx}}}$ 

- 100(1- $\alpha$ )% Confidence Interval for  $\beta_1$ [ $b_1 \pm t_{\alpha/2} S_{b1}$ ]
- $t_{\alpha}$ ,  $t_{\alpha/2}$  and p-values are based on n–2 degrees of freedom

### **Confidence and Prediction Intervals**

- The point on the regression line corresponding to a particular value of  $x_0$  of the independent variable x is  $\hat{y} = b_0 + b_1 x_0$
- It is unlikely that this value will equal the mean value of y when x equals x<sub>0</sub>
- Therefore, we need to place bounds on how far the predicted value might be from the actual value
- We can do this by calculating a confidence interval mean for the value of y and a prediction interval for an individual value of y



### Distance Value

- Both the confidence interval for the mean value of y and the prediction interval for an individual value of y employ a quantity called the distance value
- The distance value for a particular value  $x_0$  of x is

$$\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{SS_{xx}}$$

- The distance value is a measure of the distance between the value  $x_0$  of x and  $\bar{x}$
- Notice that the further x<sub>0</sub> is from  $\bar{x}$ , the larger the distance value

### A Confidence and Prediction Interval for a Mean Value of y

- Assume that the regression assumption holds
- The formula for a 100(1-α) confidence interval for the mean value of y is as follows:

 $[\hat{y} \pm t_{\alpha/2} s \sqrt{\text{Distance value}}]$ 

 The formula for a 100(1-α) prediction interval for an individual value of y is as follows:

 $[\hat{y} \pm t_{\alpha/2} s \sqrt{1 + \text{Distance value}}]$ 

• This is based on n-2 degrees of freedom



### Which to Use?

- The prediction interval is useful if it is important to predict an individual value of the dependent variable
- A confidence interval is useful if it is important to estimate the mean value
- The prediction interval will always be wider than the confidence interval

# 14.5 Simple Coefficient of Determination and Correlation

- How useful is a particular regression model?
- One measure of usefulness is the simple coefficient of determination
- It is represented by the symbol r<sup>2</sup>

Calculating The Simple Coefficient of Determination

- 1. Total variation is given by the formula  $\Sigma(y_i-\bar{y})^2$
- 2. Explained variation is given by the formula  $\Sigma(\hat{y}_i \bar{y})^2$
- 3. Unexplained variation is given by the formula  $\Sigma(y_i \hat{y})^2$
- 4. Total variation is the sum of explained and unexplained variation
- 5. r<sup>2</sup> is the ratio of explained variation to total variation

### The Simple Correlation Coefficient

• The simple correlation coefficient measures the strength of the linear relationship between y and x and is denoted by r

$$r = +\sqrt{r^2}$$
 if  $b_1$  is positive, and  
 $r = -\sqrt{r^2}$  if  $b_1$  is negative

• Where b<sub>1</sub> is the slope of the least squares line

### Different Values of the Correlation Coefficient

0



### Testing the Significance of the Population Correlation Coefficient

- The simple correlation coefficient (r) measures the linear relationship between the observed values of x and y from the sample
- The population correlation coefficient (p) measures the linear relationship between all possible combinations of observed values of x and y
- r is an estimate of p

### Testing $\rho$

• We can test to see if the correlation is significant using the hypotheses

 $\begin{array}{l} H_0:\,\rho=0\\ H_a:\,\rho\neq 0 \end{array}$ 

• The statistic is 
$$t = \frac{r \cdot \sqrt{n-2}}{\sqrt{1-r^2}}$$

• This test will give the same results as the test for significance on the slope coefficient b<sub>1</sub>



### An F Test for Model

• For simple regression, this is another way to test the null hypothesis

 $H_0: \beta_1 = 0$ 

- This is the only test we will use for multiple regression
- The F test tests the significance of the overall regression relationship between x and y



### Mechanics of the F Test

- To test  $H_0: \beta_1 = 0$  versus Ha:  $\beta_1 \neq 0$  at the  $\alpha$  level of significance
- Test statistics based on F

 $F = \frac{\text{Explained variation}}{(\text{Unexplain ed variation })/(n - 2)}$ 



- Reject  $H_0$  if  $F(model) > F_\alpha$  or p-value  $< \alpha$
- $F_{\alpha}$  is based on 1 numerator and n-2 denominator degrees of freedom

### The QHIC Case

- Quality Home Improvement Center (QHIC) operates five stores
- Wish to study relationship between home value and yearly expenditure on home upkeep
- Random sample of 40 homeowners
  - Intercept = -348.3921
  - Slope 7.2583



### Residual Analysis

- Checks of regression assumptions are performed by analyzing the regression residuals
- Residuals (e) are defined as the difference between the observed value of y and the predicted value of y, e = y - ŷ

• Note that e is the point estimate of  $\varepsilon$ 

- If regression assumptions valid, the population of potential error terms will be normally distributed with mean zero and variance  $\sigma^2$
- Different error terms will be statistically independent

### Residual Analysis #2

- Residuals should as if they are randomly and independently selected from normal populations with mean zero and variance  $\sigma^2$
- With any real data, assumptions will not hold exactly
- Mild departures do not affect our ability to make statistical inferences
- In checking assumptions, we are looking for pronounced departures from the assumptions
- So, only require residuals to approximately fit the description above



### **Residual Plots**

- 1. Residuals versus independent variable
- 2. Residuals versus predicted y's
- 3. Residuals in time order (if the response is a time series)

### **Constant Variance Assumptions**

- To check the validity of the constant variance assumption, examine residual plots against
  - The x values
  - The predicted y values
  - Time (when data is time series)
- A pattern that fans out says the variance is increasing rather than staying constant
- A pattern that funnels in says the variance is decreasing rather than staying constant
- A pattern that is evenly spread within a band says the assumption has been met

### **Constant Variance Visually**



### Assumption of Correct Functional Form

- If the relationship between x and y is something other than a linear one, the residual plot will often suggest a form more appropriate for the model
- For example, if there is a curved relationship between x and y, a plot of residuals will often show a curved relationship

### Normality Assumption

- If the normality assumption holds, a histogram or stem-and-leaf display of residuals should look bell-shaped and symmetric
- Another way to check is a normal plot of residuals
  - Order residuals from smallest to largest
  - Plot  $e_{(i)}$  on vertical axis against  $z_{(i)}$ 
    - $Z_{(i)}$  is the point on the horizontal axis under the z curve so the area under this curve to the left is (3i-1)/(3n+1)
- If the normality assumption holds, the plot should have a straight-line appearance

### Independence Assumption

- Independence assumption is most likely to be violated when the data are time-series data
  - If the data is not time series, then it can be reordered without affecting the data
  - Changing the order would change the interdependence of the data
- For time-series data, the time-ordered error terms can be autocorrelated
  - Positive autocorrelation is when a positive error term in time period i tends to be followed by another positive value in i+k
  - Negative autocorrelation is when a positive error term in time period i tends to be followed by a negative value in i+k
- Either one will cause a cyclical error term over time

### Independence Assumption Visually

