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The Simple Linear Regression Model and 

the Least Squares Point Estimates

 The dependent (or response) variable is the 
variable we wish to understand or predict

 The independent (or predictor) variable is the 
variable we will use to understand or predict the 
dependent variable

 Regression analysis is a statistical technique that 
uses observed data to relate the dependent variable 
to one or more independent variables

 The objective is to build a regression model that can 
describe, predict and control the dependent variable 
based on the independent variable
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Form of The Simple Linear Regression 

Model

 y = β0 + β1x + ε

 y = β0 + β1x + ε is the mean value of the 
dependent variable y when the value of the 
independent variable is x

 β0 is the y-intercept; the mean of y when x is 
0

 β1 is the slope; the change in the mean of y 
per unit change in x

 ε is an error term that describes the effect on 
y of all factors other than x
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Regression Terms

 β0 and β1 are called regression parameters

 β0 is the y-intercept and β1 is the slope

 We do not know the true values of these 

parameters

 So, we must use sample data to estimate 

them

 b0 is the estimate of β0 and b1 is the estimate 

of β1
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The Simple Linear Regression Model 

Illustrated
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The Least Squares Point Estimates

 Estimation/prediction equation

ŷ = b0 + b1x

 Least squares point estimate of the slope β1

 Least squares point estimate of y-intercept 0
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The Tasty Sub Shop Case #1
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The Tasty Sub Shop Case #2

 From last slide,

◦ Σyi = 8,603.1

◦ Σxi = 434.1

◦ Σx2
i = 20,757.41

◦ Σxiyi = 403,296.96

 Once we have these values, we no longer 

need the raw data

 Calculation of b0 and b1 uses these totals
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The Tasty Sub Shop Case #3 (Slope b1)
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The Tasty Sub Shop Case #4 (y-

Intercept b0)

 Prediction (x = 20.8)

 ŷ = b0 + b1x = 183.31 + (15.59)(20.8)

 ŷ = 507.69

 Residual is 527.1 – 507.69 = 19.41
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Model Assumptions and the 

Standard Error
1. Mean of Zero

At any given value of x, the population of potential error term 
values has a mean equal to zero

2. Constant Variance Assumption
At any given value of x, the population of potential error term 
values has a variance that does not depend on the value of x

3. Normality Assumption
At any given value of x, the population of potential error term 
values has a normal distribution

4. Independence Assumption
Any one value of the error term ε is statistically independent 
of any other value of ε
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Sum of Squares

 Sum of squared errors

 Mean square error

◦ Point estimate of the residual variance σ2

 Standard error

◦ Point estimate of residual standard deviation σ
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Testing the Significance of the Slope 

and y-Intercept

 A regression model is not likely to be useful 
unless there is a significant relationship 
between x and y

 To test significance, we use the null 
hypothesis:

H0: β1 = 0

 Versus the alternative hypothesis:

Ha: β1 ≠ 0
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Testing the Significance of the Slope 

#2

Alternative Reject H0 If p-Value

Ha: β1 > 0 t > tα
Area under t distribution 

right of t

Ha: β1 < 0 t < –tα
Area under t distribution left  

of t

Ha: β1 ≠ 0 |t| > tα/2
* Twice area under t 

distribution right of |t|

* That is t > tα/2 or t < –tα/2
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Testing the Significance of the Slope 

#3

 Test Statistics

 100(1-α)% Confidence Interval for β1

[b1 ± t /2 Sb1]

 t, t/2 and p-values are based on n–2 degrees 

of freedom
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Confidence and Prediction Intervals

 The point on the regression line corresponding to a 

particular value of x0 of the independent variable x 

is ŷ = b0 + b1x0

 It is unlikely that this value will equal the mean 

value of y when x equals x0

 Therefore, we need to place bounds on how far the 

predicted value might be from the actual value

 We can do this by calculating a confidence interval 

mean for the value of y and a prediction interval for 

an individual value of y
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Distance Value

 Both the confidence interval for the mean value of y 
and the prediction interval for an individual value of 
y employ a quantity called the distance value

 The distance value for a particular value x0 of x is

 The distance value is a measure of the distance 
between the value x0 of x and x

 Notice that the further x0 is from x, the larger the 
distance value
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A Confidence and Prediction Interval 

for a Mean Value of y

 Assume that the regression assumption holds

 The formula for a 100(1-) confidence interval for 

the mean value of y is as follows:

 The formula for a 100(1-) prediction interval for 

an individual value of y is as follows:

 This is based on n-2 degrees of freedom

] valueDistancetŷ[ /2s

] valueDistance1tŷ[ /2  s



19

Which to Use?

 The prediction interval is useful if it is 

important to predict an individual value of 

the dependent variable

 A confidence interval is useful if it is 

important to estimate the mean value

 The prediction interval will always be wider 

than the confidence interval
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14.5 Simple Coefficient of 

Determination and Correlation

 How useful is a particular regression model?

 One measure of usefulness is the simple 

coefficient of determination

 It is represented by the symbol r2
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Calculating The Simple Coefficient of 

Determination

1. Total variation is given by the formula 
(yi-ȳ)2

2. Explained variation is given by the formula 
(ŷi-ȳ)2

3. Unexplained variation is given by the 
formula (yi-ŷ)2

4. Total variation is the sum of explained and 
unexplained variation

5. r2 is the ratio of explained variation to total 
variation
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The Simple Correlation Coefficient

 The simple correlation coefficient measures 

the strength of the linear relationship 

between y and x and is denoted by r

 Where b1 is the slope of the least squares line

negative is  if  

and positive, is  if  
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Different Values of the Correlation 

Coefficient
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Testing the Significance of the 

Population Correlation Coefficient

 The simple correlation coefficient (r) 

measures the linear relationship between the 

observed values of x and y from the sample

 The population correlation coefficient (ρ) 

measures the linear relationship between all 

possible combinations of observed values of 

x and y

 r is an estimate of ρ
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Testing ρ

 We can test to see if the correlation is significant 
using the hypotheses

H0: ρ = 0
Ha: ρ ≠ 0

 The statistic is

 This test will give the same results as the test for 
significance on the slope coefficient b1
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An F Test for Model

 For simple regression, this is another way to 

test the null hypothesis

H0: β1 = 0

 This is the only test we will use for multiple 

regression

 The F test tests the significance of the overall 

regression relationship between x and y
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Mechanics of the F Test

 To test H0: β1= 0 versus Ha: β1 0 at the 

level of significance

 Test statistics based on F

 Reject H0 if F(model) > F or p-value < 

 F is based on 1 numerator and 

n-2 denominator degrees of freedom

2)-)/(n variationed(Unexplain

 variationExplained
F
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The QHIC Case

 Quality Home Improvement Center (QHIC) 

operates five stores

 Wish to study relationship between home 

value and yearly expenditure on home 

upkeep

 Random sample of 40 homeowners

◦ Intercept = –348.3921

◦ Slope 7.2583
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Residual Analysis

 Checks of regression assumptions are performed 
by analyzing the regression residuals

 Residuals (e) are defined as the difference 
between the observed value of y and the 
predicted value of y, e = y - ŷ

◦ Note that e is the point estimate of ε

 If regression assumptions valid, the population 
of potential error terms will be normally 
distributed with mean zero and variance σ2

 Different error terms will be statistically 
independent
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Residual Analysis #2

 Residuals should as if they are randomly and 

independently selected from normal populations 

with mean zero and variance σ2

 With any real data, assumptions will not hold 

exactly

 Mild departures do not affect our ability to make 

statistical inferences

 In checking assumptions, we are looking for 

pronounced departures from the assumptions

 So, only require residuals to approximately fit the 

description above
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Residual Plots

1. Residuals versus independent variable

2. Residuals versus predicted y’s

3. Residuals in time order (if the response is a 

time series)
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Constant Variance Assumptions

 To check the validity of the constant variance 

assumption, examine residual plots against

◦ The x values

◦ The predicted y values

◦ Time (when data is time series)

 A pattern that fans out says the variance is 

increasing rather than staying constant

 A pattern that funnels in says the variance is 

decreasing rather than staying constant

 A pattern that is evenly spread within a band says 

the assumption has been met
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Constant Variance Visually
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Assumption of Correct Functional Form

 If the relationship between x and y is 

something other than a linear one, the 

residual plot will often suggest a form more 

appropriate for the model

 For example, if there is a curved relationship 

between x and y, a plot of residuals will 

often show a curved relationship
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Normality Assumption

 If the normality assumption holds, a histogram or 

stem-and-leaf display of residuals should look bell-

shaped and symmetric

 Another way to check is a normal plot of residuals

◦ Order residuals from smallest to largest

◦ Plot e(i) on vertical axis against z(i)

 Z(i) is the point on the horizontal axis under the z curve 

so the area under this curve to the left is (3i-1)/(3n+1)

 If the normality assumption holds, the plot should 

have a straight-line appearance
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Independence Assumption

 Independence assumption is most likely to be 
violated when the data are time-series data
◦ If the data is not time series, then it can be reordered 

without affecting the data

◦ Changing the order would change the interdependence of 
the data

 For time-series data, the time-ordered error terms 
can be autocorrelated
◦ Positive autocorrelation is when a positive error term in 

time period i tends to be followed by another positive value 
in i+k

◦ Negative autocorrelation is when a positive error term in 
time period i tends to be followed by a negative value in 
i+k

 Either one will cause a cyclical error term over time
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Independence Assumption Visually


