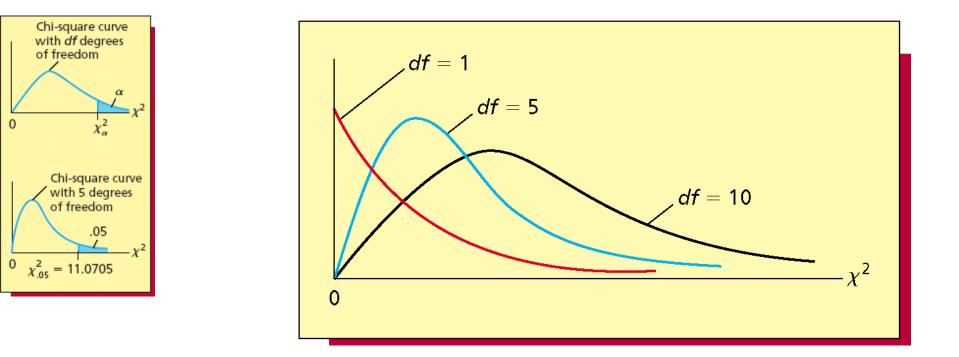
Statistical Inferences for Population Variances

The Chi-Square Distribution

- Sometimes make inferences using the chi-square distribution
 - Denoted $\chi^{\rm 2}$
- Skewed to the right
- Exact shape depends on the degrees of freedom
 - Denoted *df*
- A chi-square point χ^2_{α} is the point under a chi-square distribution that gives right-hand tail area α

The Chi-Square Distribution Continued



A Portion of the Chi-Square Table

TABLE 11.1	A Portion of the Chi-Square Table									
Degrees of Freedom (<i>df</i>)	$\chi^2_{.10}$	$\chi^2_{.05}$	X ² .025	χ ² .01	$\chi^{2}_{.005}$					
1	2.70554	3.84146	5.02389	6.63490	7.87944					
2	4.60517	5.99147	7.37776	9.21034	10.5966					
3	6.25139	7.81473	9.34840	11.3449	12.8381					
4	7.77944	9.48773	11.1433	13.2767	14.8602					
5	9.23635	→ 11.0705	12.8325	15.0863	16.7496					
6	10.6446	12.5916	14.4494	16.8119	18.5476					

Statistical Inference for Population Variance

- If s^2 is the variance of a random sample of n measurements from a normal population with variance σ^2
- The sampling distribution of the statistic

 (n 1) s² / σ² is a chi-square distribution with (n 1) degrees of freedom
- Can calculate confidence interval and perform hypothesis testing
- 100(1- α)% confidence interval for σ^2

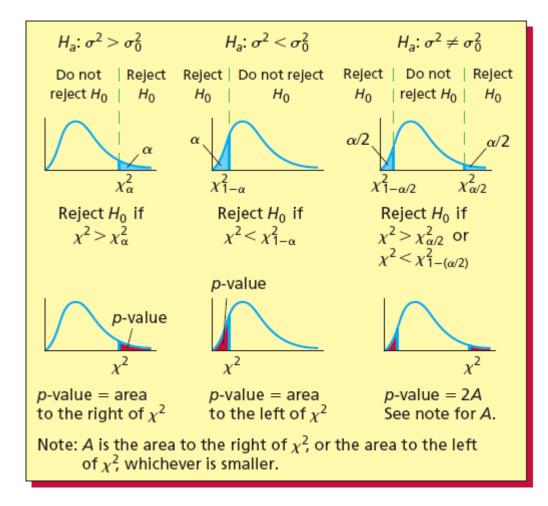
<u>Formulas</u>

A 100(1 - α) percent confidence interval for σ^2 is $\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2}}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}\right)$

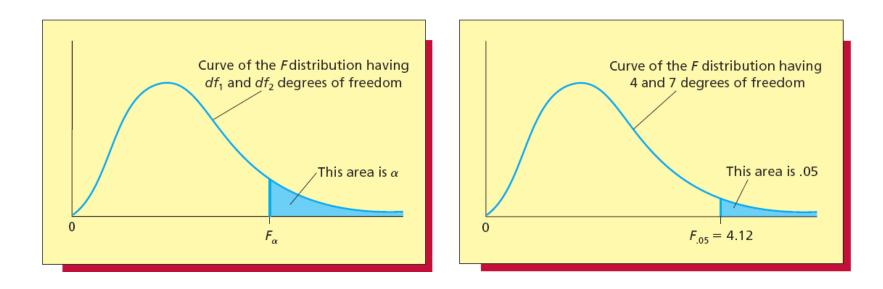
We can test $H_0: \sigma^2 = \sigma_0^2$ at α using the test statistic

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

Hypothesis Testing for Population Variance



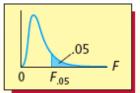
F Distribution



F Distribution Tables

- The F point F_{α} is the point on the horizontal axis under the curve of the F distribution that gives a right-hand tail area equal to α
- The value of F_{α} depends on a (the size of the right-hand tail area) and df₁ and df₂
- Different F tables for different values of lpha
 - Tables A.6 for α = 0.10
 - Tables A.7 for α = 0.05
 - Tables A.8 for α = 0.025
 - Tables A.9 for α = 0.01

A Portion of an *F* Table: Values of F_{.05}



	df ₁		Numerator Degrees of Freedom (<i>df</i> ₁)												
df	2	1	2	3	4	5	6	7	8	9	10	12	15	20	24
5)	1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9	243.9	245.9	248.0	249.1
(df_2)	2	18.51	19.00	19.16	9.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.45
	3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64
op	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77
ree	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53
f F	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84
S O	7	5.59	4.71	4.25	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41
ree	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12
eg	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90
5	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74
to	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61
i.	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51
Denominator Degrees of Freedom	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42
en	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35
0	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29

Comparing Two Population Variances by Using Independent Samples

- Population 1 has variance ${\sigma_1}^2$ and population 2 has variance ${\sigma_2}^2$
- \bullet The null hypothesis H_{0} is that the variances are the same
 - $H_0: \sigma_1^2 = \sigma_2^2$
- The alternative is that one is smaller than the other
 - That population has less variable measurements
 - Suppose $\sigma_1^2 > \sigma_2^2$
 - More usual to normalize

• Test H₀:
$$\sigma_1^2 / \sigma_2^2 = 1$$
 vs. $\sigma_1^2 / \sigma_2^2 > 1$

Comparing Two Population Variances Continued

- Reject H_0 in favor of H_a if s_1^2/s_2^2 is significantly greater than 1
- s_1^2 is the variance of a random of size n_1 from a population with variance σ_1^2
- s_2^2 is the variance of a random of size n_2 from a population with variance σ_2^2
- To decide how large s_1^2/s_2^2 must be to reject H_0 , describe the sampling distribution of s_1^2/s_2^2
- The sampling distribution of s_1^2/s_2^2 is the F distribution

Two Tailed Alternative

- The null and alternative hypotheses are:
 - $H_0: \sigma_1^2 = \sigma_2^2$ $H_0: \sigma_1^2 \neq \sigma_2^2$
- Test statistic F is the ratio of the larger sample variance divided by the smaller sample variance
- df₁ = n-1 for sample having the larger variance and df₂ = n-2 for smaller variance
- Reject if $F > F_{\alpha/2}$ or p-value < α

