COURSE PLAN

COURSE / CODE: WASTEWATER ENGINEERING / SKAB 2922

COURSE LEARNING OUTCOMES

By the end of the course, students should be able to:

- 1. **Describe** the basic concept of microbiology, wastewater characteristics, sewer system and able to **explain** the concept of wastewater treatment and sludge treatment system (CLO 1; PLO 1)
- Solve problems related to wastewater parameters and design unit processes in sewage treatment system (CLO 2; PLO 3)
- 3. Produce report or presentation related to current environmental issues (CLO 3; PLO 12)

LECTURE PLANNING				
WEEK	LECTURE	TOPIC / CONTENT	DATE	
1	1	Introduction		
	2	Environmental Microbiology – Types and Classes		
2	3	Environmental Microbiology – Metabolism and Biological Growth in Wastewater Treatment		
	4	Wastewater – Types, Characteristics – SS		
3	5	Wastewater - Characteristics – BOD		
	6	Wastewater - Characteristics – COD		
4	7	Discharge Standards & Sewerage Act		
	8	Wastewater Quantity		
5	9	Sewer System		
	10	Test 1	9 October 2018	
6	11	Introduction to Sewage Treatment System		
0	12	Preliminary Treatment		
7	13	Primary Treatment – Primary Clarifier Design		
	14	Introduction to Secondary Treatment		
8	15	Activated Sludge – Principles and Concept		
	16	Conventional Activated Sludge – Design		
9		MID SEMESTER BREAK	6 - 8 November 2018	
10	17	Conventional Activated Sludge – Design		
	18	Extended Aeration – Design		
11	19	Sequencing Batch Reactor		
	20	Trickling Filters - Principles and Concept		
12	21	Trickling Filters – Biological Tower Design		
	22	Waste Stabilization Pond – Principles and Concept		
13	23	Waste Stabilization Pond – Design		
	24	Site Visit to Sewage Treatment Plant		
14	25	Aerated Lagoon – Principles, Concept and Design		
	26	Test 2	11 December 2018	
15	27	Sludge – Sources and Quantity		
	28	Sludge Treatment and Disposal		
16-18		REVISION WEEK AND FINAL EXAMINATION		

DISTRIBUTION OF MARKS

1.	Assignment	10 %
2.	Test 1 (1 hour)	20 %
3.	Test 2 (1 hour)	20 %
4.	Final Examination (2 hours)	40 %
5.	Generic Skill (Life Long Learning)	10 %
	TOTAL	100 %

BASIC REFERENCES

- Warren Viessman, Jr., Mark J. Hammer, Elizabeth M. Perez, and Paul A. Chadik (2009) Water Supply and Pollution Control, 8th Ed. Pearson Education
- Hammer, M.J. (2005) Water and Wastewater Technology, 5th Ed., Pearson Education South Asia Ltd
- 3. Metcalf & Eddy., (2003) Wastewater Engineering: Treatment and Reuse, 4th Ed., Mc Graw-Hill
- 4. Code of Practice for Design and Installation of Sewerage System (MS1228), 1991