Wastewater Engineering

SKAB2922

Dr. Mohamad Darwish

LECTURE PLANNING

WEEK	LECTURE	TOPIC / CONTENT	DATE
1	1	Introduction	
	2	Environmental Microbiology – Types and Classes	
2	3	Environmental Microbiology – Metabolism and Biological Growth	
		in Wastewater Treatment	
	4	Wastewater – Types, Characteristics – SS	
3	5	Wastewater - Characteristics - BOD	
	6	Wastewater - Characteristics - COD	
4	7	Discharge Standards & Sewerage Act	
	8	Wastewater Quantity	
5	9	Sewer System	
	10	Test 1	9 October 2018
6	11	Introduction to Sewage Treatment System	
	12	Preliminary Treatment	
7	13	Primary Treatment – Primary Clarifier Design	
/	14	Introduction to Secondary Treatment	
	15	Activated Sludge – Principles and Concept	
8	16	Conventional Activated Sludge – Design	
9		MID SEMESTER BREAK	6 - 8 November 2018
10	17	Conventional Activated Sludge – Design	
	18	Extended Aeration – Design	
11	19	Sequencing Batch Reactor	
	20	Trickling Filters - Principles and Concept	
12	21	Trickling Filters - Biological Tower Design	
	22	Waste Stabilization Pond – Principles and Concept	
13	23	Waste Stabilization Pond – Design	
	24	Site Visit to Sewage Treatment Plant	
14	25	Aerated Lagoon – Principles, Concept and Design	
	26	Test 2	11 December 2018
15	27	Sludge – Sources and Quantity	
	28	Sludge Treatment and Disposal	
16-18		REVISION WEEK AND FINAL EXAMINATION	

DISTRIBUTION OF MARKS				
1.	Assignment	10 %		
2.	Test 1 (1 hour)	20 %		
3.	Test 2 (1 hour)	20 %		
4.	Final Examination (2 hours)	40 %		
5.	Generic Skill (Life Long Learning)	10 %		
	TOTAL	100 %		

Contact ...

- Email: <u>simohamad@utm.my</u>
- H/P: 011 3965 2967
- Website: people.utm.my/mdarwish

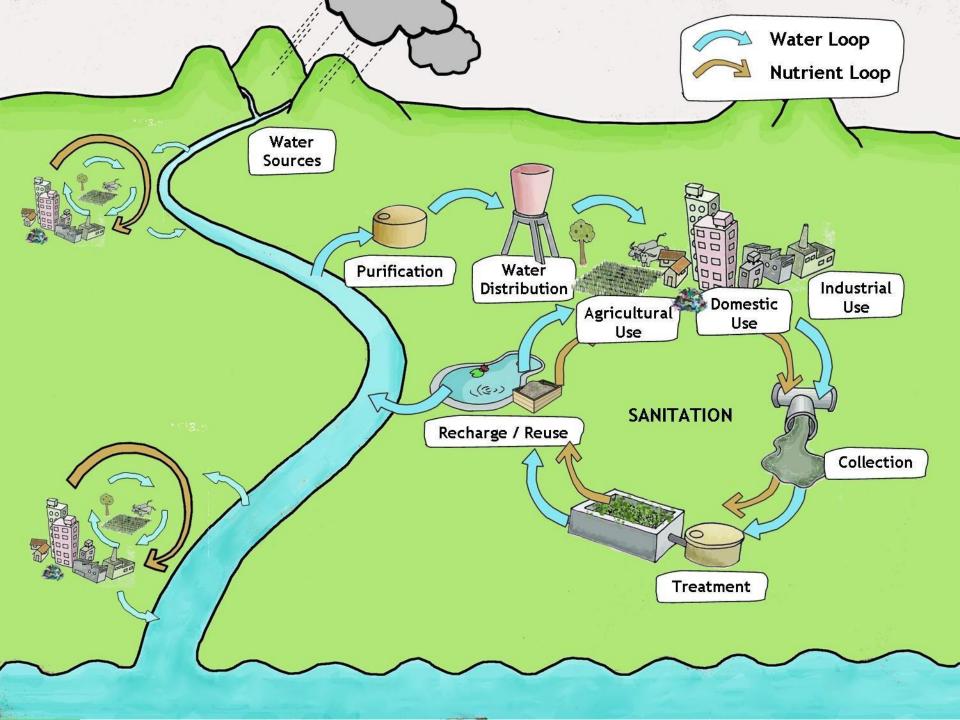
What do you expect from this course?

- Basic concepts of microbiology, wastewater characteristics, sewer system, wastewater and sludge treatment system.
- Solve some of wastewater parameters.
- Design each unit of process in sewage treatment plant.
- Current environmental problems.

CHAPTER 1.0

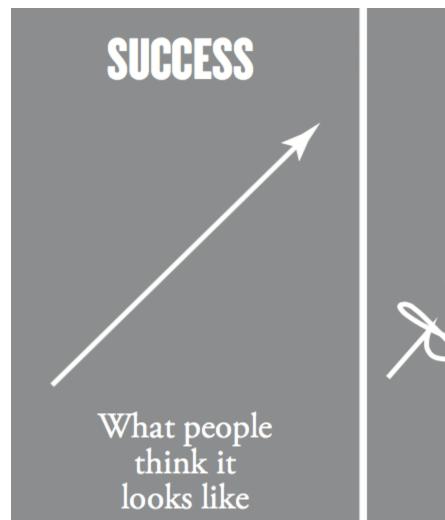
INTRODUCTION

What is wastewater?


"Wastewater", also known as "sewage" originates from residential, commercial, and industrial area.

Why treat wastewater?

- Untreated wastewater harmful to health
- Breeding sites for insects, pests and micro organisms
- Can cause environmental pollution and affect ecosystem



The Role of the Engineer

- Wastewater engineers are involved in the conception, planning, evaluation, design, construction, and operation and maintenance of the systems.
- An understanding of the nature of wastewaters is essential in the design and operation of collection, treatment, and disposal facilities.
- The elements of wastewater systems and the associated engineering task are listed in Table 1.0

Table 1.0 Elements of wastewater management systems and associated engineering task

Element	Engineering Task	
Wastewater Generation	Estimation of the quantities of wastewater, determination of wastewater characteristics	
Collection system	Design of sewers	
Treatment (wastewater and sludge)	Selection, analysis, and design of treatment operation and processes to meet specified treatment objectives	
Disposal and reuse (wastewater and sludge)	Design of facilities used for the disposal and reuse of treated effluent in the aquatic and land environment, and the disposal and reuse of sludge	

SUCCESS What it really looks like

CHAPTER 2.0

ENVIRONMENTAL MICROBIOLOGY

MICROORGANISMS THAT PLAY AN IMPORTANT ROLE IN ENVIRONMENTAL ENGINEERING ARE:

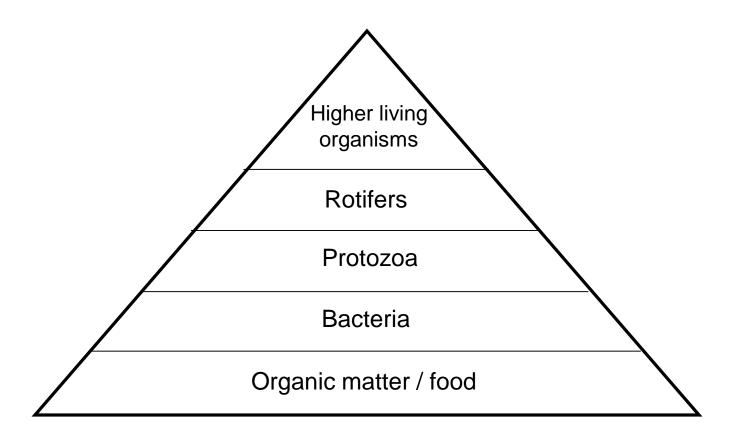
Bacteria

Viruses

Fungi

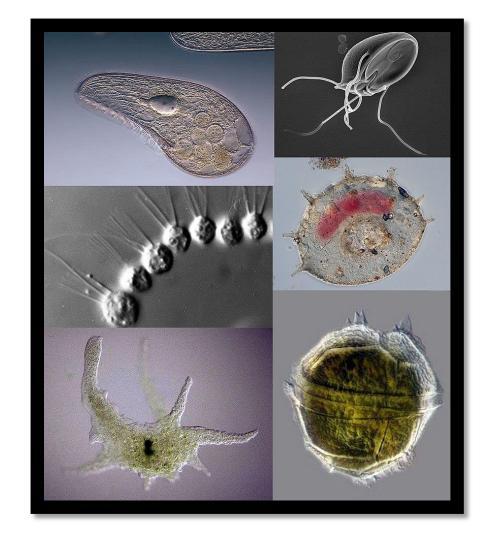
Algae

Protozoa

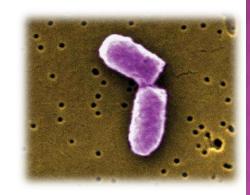

All the above organisms live together as one community

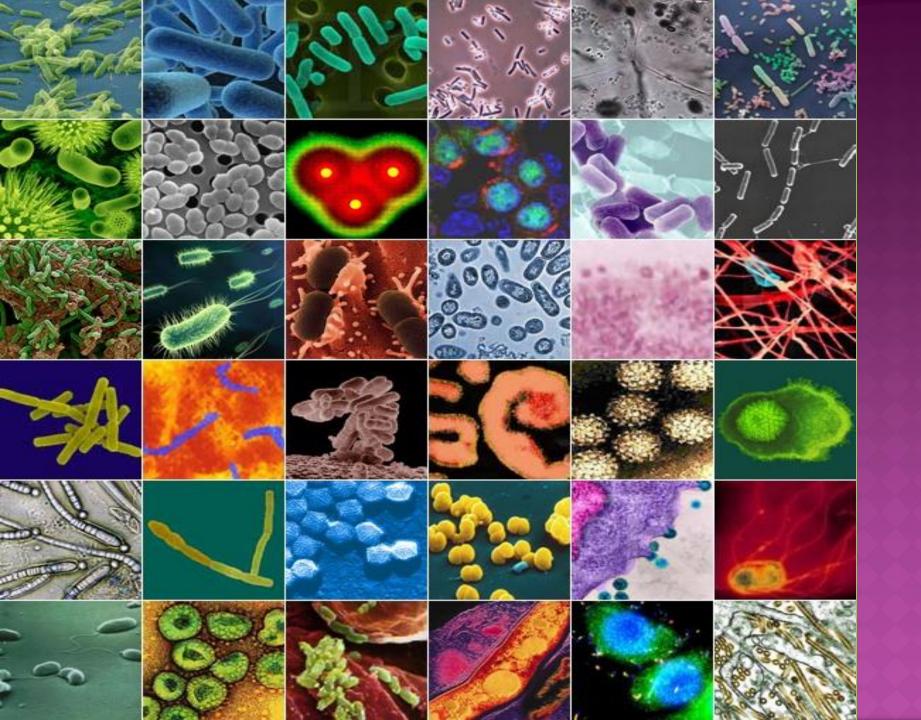
The importance of these organisms in sewage treatment plants is to biodegrade organic and inorganic matter into simple compounds:

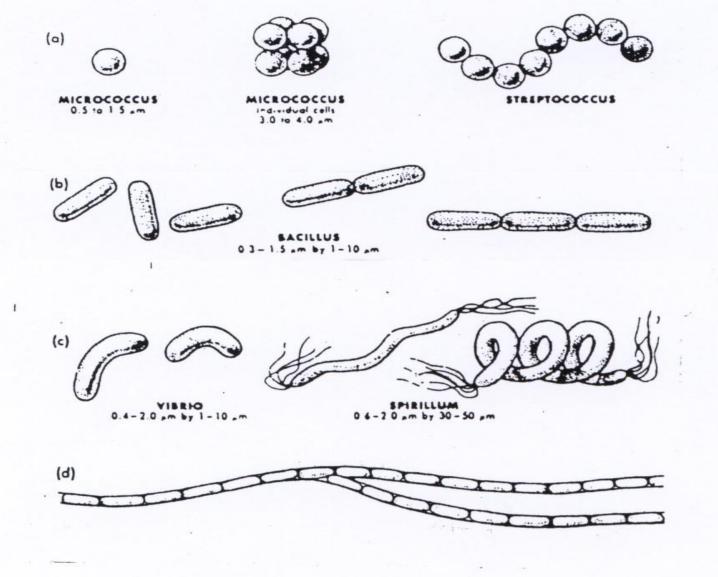
Energy


Organic Matter +
$$O_2 \longrightarrow CO_2 + H_2O$$
 + new cells

A typical wastewater microorganisms food pyramid


Bacteria consumed most of the food for their growth. Different groups of microorganisms are then transfer carbon and energy from one trophic (food) level to the next trophic level




Different types of Protzoa (Animals-like behavour, e.g. predation, motility)

BACTERIA

- •Small organisms with size between $0.5-5.0~\mu m$
- •Present individually, in pairs or in chains with different kinds of shapes such as rod, spiral, spherical and helical
- •Important in wastewater treatment.
- •Single-cell microorganisms.
- •The organisms reproduce through binary fission and will double themselves within 15 30 minute in suitable condition.

Typical shapes of bacteria: (a) spheroid, (b) rod, (c) curved rod or spiral, and (d) filamentous (made up of chains of individual cells).

CLASSIFICATION OF BACTERIA

- i. According to energy and carbon sources
- Heterotroph
 - using the ORGANIC MATERIAL AS CARBON AND ENERGY SOURCES
- Autotroph
 - using the INORGANIC AS ENERGY SOURCE and CARBON DIOXIDE AS CARBON SOURCE (Using photosynthesis or chemosynthesis)

CLASSIFICATION OF BACTERIA (CONT.)

ii. According to the utilisation of dissolved oxygen

- Aerobe
 - USING DISSOLVED OXYGEN (DO) during the decomposition of organic compound
- Anaerobe
 - using oxygen in the form of different compound such as NO₃-, SO₄²⁻
- Facultative
 - able to survive in both of the above condition

ALGAE

- Generate energy by <u>photosynthesis</u> (the process of harvesting light energy from the sun to generate carbohydrates).
- During the present of sunlight, they increase the DO level in the water. This subsequently supply oxygen to microorganisms.
- Rapid production in the presence of high concentrations of nitrogen and phosphorus.
- However, when there are too much of algae in the water:
 - o Taste and smell problems
 - o Reduce the intensity of light penetration
 - o Die off disintegrate and cause anaerobic condition

Are Algae Plants or Animals?

Algae are photosynthetic creatures. They are neither plant, animal or fungi. Many algae are single celled, however some species are multicellular.

● To be continued ...