Example 10

Pressure in the evaporator of an ammonia refrigerator is 1.902 bar and the pressure in the condenser is 12.37 bar . Calculate the refrigerating effect per unit mass of refrigerant and the $\mathrm{COP}_{\text {ref }}$ for the following cycles;
i. Ideal reversed Carnot cycle
ii. Dry saturated vapor delivered to the condenser after isentropic compression, and no intercooling of the condensed liquid
iii. Dry saturated vapor delivered to the compressor where it is compressed isentropically, and no intercooling of the condensed liquid
iv. Dry saturated vapor delivered to the compressor, and the liquid after condensation undercooled by 10K
v. Recalculate (iv) for a cycle between the same saturation temperature using Refrigerant \circledR^{\circledR} 134a instead of ammonia
vi. Mass flow rate required of ammonia and R134a, and the indicated power of the compressor per kilowatt of refrigerating capacity
i.

$\mathrm{T}_{1}=-20^{\circ} \mathrm{C}$ is the saturation temperature corresponding to the evaporator pressure of 1.902 bar
$\mathrm{T}_{2}=32^{\circ} \mathrm{C}$ the saturation temperature corresponding to the condenser pressure of 12.37 bar.

$$
\mathrm{COP}_{\mathrm{ref}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}=\frac{305}{305-253}=\frac{253}{52}=4.86
$$

Refrigerating effect, Q_{1},

$$
\mathrm{q}_{1}=\mathrm{T}_{1}\left(\mathrm{~s}_{1}-\mathrm{s}_{4}\right)=\mathrm{T}_{1}\left(\mathrm{~s}_{2}-\mathrm{s}_{3}\right)
$$

From table

$$
\begin{aligned}
& \mathrm{s}_{2}=\mathrm{s}_{\text {g@at12.37bar }}=4.9519 \mathrm{~kJ} / \mathrm{kgK} \\
& \mathrm{~s}_{3}=\mathrm{s}_{\text {f@at } 12.37 \mathrm{bar}}=1.2306 \mathrm{~kJ} / \mathrm{kgK} \\
& \mathrm{q}_{1}=253(4.9519-1.2306)=948.32 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

ii.

At 12.37 bar
$\mathrm{h}_{2}=\mathrm{h}_{\mathrm{g}}=1466.95 \mathrm{~kJ} / \mathrm{kg}$ and $\mathrm{h}_{3}=\mathrm{h}_{\mathrm{f}}=331.81 \mathrm{~kJ} / \mathrm{kg}$

At 12.37 bar ,
$\mathrm{h}_{4}=\mathrm{h}_{3}=331.81 \mathrm{~kJ} / \mathrm{kg}$

Process1-2 is isentropic,

$$
\mathrm{s}_{1}=\mathrm{s}_{2}=\mathrm{s}_{\mathrm{g}} \text { at 12.37bar }=4.9519 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}
$$

Therefore,
$\mathrm{s}_{1}=\mathrm{s}_{\mathrm{f}_{1}}+\mathrm{xs}_{\mathrm{fg}_{1}}$
$4.9519=0.3635+\mathrm{x}_{1}(5.6151-0.3635)$
$\mathrm{x}_{1}=0.8737$

$$
\begin{aligned}
\mathrm{h}_{1} & =\mathrm{h}_{\mathrm{f}_{1}}+\mathrm{xh}_{\mathrm{fg}_{11}} \\
& =89.528+[0.8737(1417.726-89.528)]=1249.97 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Refrige rating effect $=\mathrm{q}_{\mathrm{L}}=\mathrm{h}_{1}-\mathrm{h}_{4}=1249.97-331.81=918.16 \mathrm{~kJ} / \mathrm{kg}$

$$
\mathrm{W}_{\mathrm{in}}=\mathrm{h}_{2}-\mathrm{h}_{1}=1466.95-1249.97=216.98 \mathrm{~kJ} / \mathrm{kg}
$$

$\mathrm{COP}_{\text {ref }}=\frac{\mathrm{Q}_{1}}{\sum \mathrm{~W}}=\frac{918.16}{216.98}=4.2315$
iii.

At 1.902 bar,
$\mathrm{h}_{1}=\mathrm{h}_{\mathrm{g}}=1417.73 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{3}=\mathrm{h}_{4}=331.81 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{s}_{1}=\mathrm{s}_{\mathrm{g}}=\mathrm{s}_{2}=5.6152 \mathrm{~kJ} / \mathrm{kg}$

At $12.37{\text { bar }, \mathrm{s}_{\mathrm{g}}=4.952 \mathrm{~kJ} / \mathrm{kgK}, ~(1)}$

Refrigerart is superhe atel atstate 2 .
$\Rightarrow \mathrm{h}_{2}=1694.786 \mathrm{~kJ} / \mathrm{kg}$

Re frigerating effect, $\mathrm{q}_{1}=\mathrm{h}_{1}-\mathrm{h}_{4}=1417.73-331.81=1085.92 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{W}_{\text {in }}=\mathrm{h}_{2}-\mathrm{h}_{1}=1694.786-1417.73=277.056 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{COP}_{\text {ref }}=\frac{\mathrm{Q}_{1}}{\sum \mathrm{~W}}=\frac{1085.92}{277.056}=3.92$
iv.

h_{1} and h_{2} are as determined
$h_{3}=h_{4}$ can be found by assuming that the undercooling takes place along the saturated liquid line,

Therefore, $\mathrm{h}_{3}=\mathrm{h}_{\mathrm{f}}$ at T_{3}.

Another way of obtaining h_{3} is by assuming a constant specific heat, c , for the ammonia liquid and then,

$$
\begin{aligned}
& \mathrm{h}_{3}=\left(\mathrm{h}_{\mathrm{f}} \mathrm{at}_{\mathrm{a}}\right)-\mathrm{c}\left(\mathrm{~T}_{\mathrm{a}}-\mathrm{T}_{3}\right) \\
& \mathrm{h}_{3}=\mathrm{h}_{\mathrm{f}_{\text {@at }}}=295 \mathrm{~K}
\end{aligned}=283.84 \mathrm{~kJ} / \mathrm{kg} \text {. }
$$

Refrigeratng effect, $\mathrm{q}_{1}=\mathrm{h}_{1}-\mathrm{h}_{4}$ $=1417.73-283.84=1133.89 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{COP}_{\text {ref }}=\frac{\mathrm{Q}_{1}}{\sum \mathrm{~W}} \frac{1133.89}{277.056}=4.092$

v. R134a (derived from properties of the ICI refrigerant KLEA 134a)

Saturation pressure in the evaporator is that corresponding to $-20^{\circ} \mathrm{C}$, i.e. 1.3299 bar
$\mathrm{h}_{1}=\mathrm{h}_{\mathrm{g} 1 \oplus-20^{\circ} \mathrm{C}}=283.03 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{3}=\mathrm{h}_{\mathrm{f} 3 @ 22^{\circ} \mathrm{C}}=129.708 \mathrm{~kJ} / \mathrm{kg}$

Also,
$\mathrm{s}_{1}=\mathrm{s}_{\mathrm{g} 1}=\mathrm{s}_{2}=1.7273 \mathrm{~kJ} / \mathrm{kgK}$

Saturation temperature in the condenser is $32^{\circ} \mathrm{C}$, hence using a double interpolating to find h_{2}.

$$
\begin{aligned}
\text { At } 30^{\circ} \mathrm{C} \Rightarrow & \left(\frac{\mathrm{~h}_{2 @ 30^{\circ} \mathrm{C}}-\mathrm{h}_{\mathrm{g} @ 30^{\circ}}}{\mathrm{h}_{2 @ 30^{\circ} \mathrm{C} \text { @uperhea ted } @ 10 \mathrm{~K}}-\mathrm{h}_{\text {g@30 }}}\right)=\left(\frac{\mathrm{s}_{2}-\mathrm{s}_{\mathrm{g} @ 30^{\circ}}}{\mathrm{s}_{\text {superheate d } @ 20^{\circ} @ 10 \mathrm{~K}}-\mathrm{s}_{\mathrm{g} @ 30^{\circ}}}\right) \\
& \mathrm{h}_{2 @ 30^{\circ} \mathrm{C}}=311.79+\left(\frac{1.7273-1.7044}{1.7444-1.7044}\right)(324.12-311.79)=318.85 \mathrm{~kJ} / \mathrm{kg} \\
\text { At } 35^{\circ} \mathrm{C} \Rightarrow & \left(\frac{\mathrm{~h}_{2 @ 35^{\circ} \mathrm{C}}-\mathrm{h}_{\mathrm{g} @ 35^{\circ}}}{\mathrm{h}_{2 @ 35^{\circ} \mathrm{C} @ \text { superhea ted } @ 10 \mathrm{~K}}-\mathrm{h}_{\text {g@35 }}}\right)=\left(\frac{\mathrm{s}_{2}-\mathrm{s}_{\text {g } @ 35^{\circ}}}{\mathrm{s}_{\text {superheate d } @ 20^{\circ} @ 10 \mathrm{~K}}-\mathrm{s}_{\mathrm{g} @ 35^{\circ}}}\right) \\
& \mathrm{h}_{2 @ 35^{\circ} \mathrm{C}}=314.47+\left(\frac{1.7273-1.7038}{1.7444-1.7038}\right)(327.11-314.47)=321.82 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

The refore at $32^{\circ} \mathrm{C}$ of saturationte mperatue in the condenser
$\mathrm{h}_{2 @ 32^{\circ} \mathrm{C}}=320.04 \mathrm{~kJ} / \mathrm{kg}$

Refregeratirg effectq $q_{1}=\mathrm{h}_{1}-\mathrm{h}_{4}=283.03-129.708=153.322 \mathrm{~kJ} / \mathrm{kg}$ (lower compared to $1085.92 \mathrm{~kJ} / \mathrm{kg}$ for ammonia cycle)
$\mathrm{COP}_{\text {ref }}=\frac{\mathrm{h}_{1}-\mathrm{h}_{4}}{\mathrm{~h}_{2}-\mathrm{h}_{1}}=\frac{283.03-129.708}{320.04-283.03}=\frac{153.322}{37.01}=4.14$
(higher compared to 4.092 for ammonia cycle)
vi.

Refrigerating effect ${ }_{\text {ammonia }}=q_{1}=1133.89 \mathrm{~kJ} / \mathrm{kg}$

Refrigerating effect $t_{\text {R134a }}=q_{1}=153.322 \mathrm{~kJ} / \mathrm{kg}$

Refrigerating load,

$$
\dot{\mathrm{m}}=\frac{\text { refrige raton capacity }}{\text { refrigeratng effectper unit mass }}
$$

refrige raton capacity $=1$ kilowatt of refrigeraton(according to the requiremert)

$$
\begin{aligned}
& \dot{\mathrm{m}}_{\text {ammonia }}=\frac{1}{1133.89}=8.819 \times 10^{-4} \mathrm{~kg} / \mathrm{s} \\
& \dot{\mathrm{~m}}_{\mathrm{R} 134 \mathrm{a}}=\frac{1}{153.322}=6.522 \times 10^{-3} \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

$$
\mathrm{W}_{\text {ammonia }}=277.056 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{P}_{\text {ammonia }}=8.819 \times 10^{-4} \times 277.056=0.2443 \mathrm{~kW}
$$

$$
\mathrm{W}_{\mathrm{R} 134 \mathrm{a}}=320.04-283.03=37.01 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\text { Power } \mathrm{r}_{\mathrm{R} 134 \mathrm{a}}=6.522 \times 10^{-3} \times 37.01=0.2414 \mathrm{~kW}
$$

It can be seen that

- COP is greater for the cycle using R134a
- Therefore, the power output required is less for the same capacity.
- Mass flow rate required for R134a is very much greater than for ammonia
- But at the compressor intake, the specific volume of saturated ammonia vapor at the suction pressure is $0.6237 \mathrm{~m}^{3} / \mathrm{kg}$ (refer refrigerant table) compared with a value of me/kg for R134a. Hence, volume flow rate of vapor into the compressor per kilowatt is

$$
\begin{gathered}
\dot{v}_{\text {ammonia }}=v \times \dot{\mathrm{m}}=0.6237 \times 8.819 \times 10^{-4}=5.55 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s} \\
\dot{v}_{\mathrm{R} 134 \mathrm{a}}=v \times \dot{\mathrm{m}}=0.145 \times 6.522 \times 10^{-3}=9.457 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}
\end{gathered}
$$

Required volume flow rate for R134a is only about 1.6 greater than ammonia, although the mass flow rate is about a factor of 7 times greater. The volume flow rate determines the size of the compressor.

