Example 7

A gas-turbine unit takes in air at $17^{\circ} \mathrm{C}$ and 1.01 bar and the pressure ratio is $8 / 1$. The compressor is driven by HP turbine and LP turbine drives a separate power shaft. The isentropic efficiencies of the compressor and the HP and LP turbines are $0.8,0.85$ and 0.83 respectively. Calculate the pressure and temperature of the gases entering the power turbine, the net power developed by the unit kg/s mass flow rate, the work ratio and the cycle efficiency of the unit. The maximum cycle temperature is $650^{\circ} \mathrm{C}$. For the compression process take $\mathrm{Cp}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and $\gamma=1.4$; for the combustion process and for the expansion process take $C p=1.15 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and $\gamma=1.333$. Neglect the mass of fuel.

From the equation for an isentropic process

$$
\frac{\mathrm{T}_{2 \mathrm{~s}}}{\mathrm{~T}_{1}}=\left(\frac{\mathrm{P}_{2 \mathrm{~s}}}{\mathrm{P}_{1}}\right)^{(\gamma-1) / \gamma}
$$

Therefore,

$$
\mathrm{T}_{2 \mathrm{~s}}=290 \times(8)^{(0.4) / 1.4}=525.32 \mathrm{~K}
$$

Then,

$$
\begin{aligned}
& \eta_{\text {comp }}=\frac{\mathrm{T}_{2 \mathrm{~s}}-\mathrm{T}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}=\frac{525.32-290}{\mathrm{~T}_{2}-290}=0.8 \\
& \mathrm{~T}_{2}=584.15 \mathrm{~K}
\end{aligned} \begin{aligned}
\text { Compressorwork input } & =\mathrm{C}_{\mathrm{pa}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=\mathrm{C}_{\mathrm{pa}}(584.15-290) \\
& =1.005 \times 294.15=295.62 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Now the work output from the HP turbine must be sufficient to drive the compressor,
Turbine work output from HP turbine $=\mathrm{C}_{\mathrm{p}}\left(\mathrm{T}_{3}-\mathrm{T}_{4}\right)=295.62 \mathrm{~kJ} / \mathrm{kg}$

$$
\left(\mathrm{T}_{3}-\mathrm{T}_{4}\right)=\frac{295.62}{1.15}=257.06 \mathrm{~K}
$$

Therefore

$$
\mathrm{T}_{4}=\mathrm{T}_{3}-257.06=923-257.06=665.94 \mathrm{~K}
$$

Then,

$$
\begin{gathered}
\eta_{\text {th }} \text { for HP turbine }=\frac{\mathrm{T}_{3}-\mathrm{T}_{4}}{\mathrm{~T}_{3}-\mathrm{T}_{4 \mathrm{~s}}}=\frac{923-665.94}{923-\mathrm{T}_{4 \mathrm{~s}}}=0.85 \\
\mathrm{~T}_{4 \mathrm{~s}}=620.57 \mathrm{~K}
\end{gathered}
$$

Similarly for turbine

$$
\frac{\mathrm{T}_{3}}{\mathrm{~T}_{4 \mathrm{~s}}}=\left(\frac{\mathrm{P}_{3}}{\mathrm{P}_{4}}\right)^{(\gamma-1) / \gamma}
$$

or

$$
\begin{aligned}
& \frac{\mathrm{P}_{3}}{\mathrm{P}_{4 \mathrm{~s}}}=\left(\frac{\mathrm{T}_{3}}{\mathrm{~T}_{4 \mathrm{~s}}}\right)^{\gamma /(\gamma-1)}=\left(\frac{923}{620.57}\right)^{1.333 /(0.333)}=4.9 \\
& \mathrm{P}_{4 \mathrm{~s}}=\frac{8 \times 1.01}{4.9}=1.65 \mathrm{bar}
\end{aligned}
$$

Hence, the pressure and temperature at entry to the LP turbine are 1.65bar and 665.94 K $\left(392.94^{\circ} \mathrm{C}\right)$.

To find the power output it is now necessary to evaluate T_{5}. The pressure ratio, $\left(p_{4} / p_{5}\right)$, is given by $\left(p_{4} / p_{3}\right) \times\left(p_{3} / p_{5}\right)$, is given by
$\frac{P_{4 s}}{P_{5 s}}=\frac{P_{4 s}}{P_{3}} \times \frac{P_{2 s}}{P_{1}}\left(\right.$ Since $P_{2}=P_{3}$ and $\left.P_{5}=P_{1}\right)$

Therefore,

$$
\frac{\mathrm{P}_{4 \mathrm{~s}}}{\mathrm{P}_{5 \mathrm{~s}}}=\frac{8}{4.9}=1.63
$$

Then,

$$
\frac{\mathrm{T}_{4}}{\mathrm{~T}_{5 \mathrm{~s}}}=\left(\frac{\mathrm{P}_{4 \mathrm{~s}}}{\mathrm{P}_{5 \mathrm{~s}}}\right)^{(\gamma-1) / \gamma}=1.63^{0.33311 .333}=1.13
$$

The refore

$$
\mathrm{T}_{5 \mathrm{~s}}=\frac{665.94}{1.13}=589.18 \mathrm{~K}
$$

Next,

$$
\begin{aligned}
& \eta_{\text {turb }} \text { for the LP turbine }=\frac{\mathrm{T}_{4}-\mathrm{T}_{5}}{\mathrm{~T}_{4}-\mathrm{T}_{5 \mathrm{~s}}}=0.83 \\
& \frac{\mathrm{~T}_{4}-\mathrm{T}_{5}}{665.94-589.18}=0.83 \\
& \mathrm{~T}_{4}-\mathrm{T}_{5}=63.71
\end{aligned}
$$

Then,
Work output from LP turbine $=\mathrm{C}_{\mathrm{pg}}\left(\mathrm{T}_{4}-\mathrm{T}_{5}\right)=1.15(63.71)=73.27 \mathrm{~kJ} / \mathrm{kg}$ Hence,

Net powe routput $=73.27 \times 1=73.27 \mathrm{~kW}$

$$
\text { Work ratio }=\frac{\text { Net work output }}{\text { Gross work output }}=\frac{73.27}{73.27+295.62}=0.1986
$$

and

$$
\begin{aligned}
& \text { Heatsupplied }=\mathrm{C}_{\mathrm{pg}}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)=1.15(923-584.15)=389.68 \mathrm{~kJ} / \mathrm{kg} \\
& \eta_{\text {cycle }}=\frac{\text { Net work output }}{\text { Heatsupplied }}=\frac{73.27}{389.68}=0.188
\end{aligned}
$$

