Example 9

For the gas turbine generating set of example 8 recalculate the cycle efficiency and the work ratio, taking the following pressure losses into account but assuming all other assumptions still apply: air side of HE, 0.3bar; gas inside of HE and exhaust duct, 0.05 bar ; intercooler, 0.15 bar ; each combustion chamber, 0.2 bar .

Take the ambient pressure of 1.01bar, a pressure ratio for each compressor of 3:1 as previously calculated and find a new overall pressure ratio for the compression. All other data are unchanged. χ s describe losses.

Previouslyknown,
$\mathrm{T}_{2 \mathrm{~s}}=394.20 \mathrm{~K} ; \quad \mathrm{T}_{2}=\mathrm{T}_{4}=420.75 \mathrm{~K} ; \quad \mathrm{W}_{\text {in }}$ percompressoistage $=133.41 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{P}_{3}=\left(\mathrm{r}_{\mathrm{p}} \times \mathrm{P}_{1}\right)-\chi_{\text {intercooling }}=(3 \times 1.01)-0.15=2.88$ bar
$\mathrm{P}_{4}=\left(\mathrm{r}_{\mathrm{p}} \times \mathrm{P}_{3}\right)=3 \times 2.88=8.64 \mathrm{bar}$
$r_{\text {poverall, new }}=\frac{P_{4}}{P_{1}}=\frac{8.64}{1.01}=8.55$ comparewith $r_{\text {poverall,old }}=9$
$\mathrm{P}_{6}=\mathrm{P}_{4}-\chi_{\mathrm{HE}, \mathrm{a}}-\chi_{\mathrm{cc}}=8.64-0.3-0.2=8.14 \mathrm{bar}$

Previouslyknown,
$\mathrm{W}_{\text {out, HPturb }}=272.27 ; \quad \mathrm{T}_{7}=686.24 \mathrm{~K} ; \quad \mathrm{T}_{7 \mathrm{~s}}=644.46 \mathrm{~K} ; \quad \frac{\mathrm{P}_{6}}{\mathrm{P}_{7}}=4.19$
Then
$\mathrm{P}_{7}=\frac{\mathrm{P}_{6}}{4.19}=\frac{8.14}{4.19}=1.94 \mathrm{bar}$

Then,
$\mathrm{P}_{8}=\left(\mathrm{P}_{7}-\chi_{\text {cc }}\right)=(1.94-0.2)=1.74 \mathrm{bar}$
$\mathrm{P}_{10}=\mathrm{P}_{1}=1.01 \mathrm{bar}$
Therefore
$\mathrm{P}_{9}=\mathrm{P}_{10}+\chi_{\mathrm{HE}}=1.01+0.05=1.06 \mathrm{bar}$
$\frac{\mathrm{P}_{8}}{\mathrm{P}_{9}}=\frac{1.74}{1.06}=1.64$
$\frac{\mathrm{T}_{8}}{\mathrm{~T}_{9 \mathrm{~s}}}=\left(\frac{\mathrm{P}_{8}}{\mathrm{P}_{9}}\right)^{\gamma / \gamma-1}=(1.64)^{0.3331 .333}$
Therefore
$\mathrm{T}_{9 \mathrm{~s}}=\frac{\mathrm{T}_{8}}{(1.64)^{\gamma-1 / \gamma}}=\frac{923}{(1.64)^{0.3331 .333}}=815.51 \mathrm{~K}$
$\eta_{\mathrm{LT}}=\frac{\mathrm{T}_{8}-\mathrm{T}_{9}}{\mathrm{~T}_{8}-\mathrm{T}_{9 \mathrm{~s}}}=0.85$
$\mathrm{T}_{9}=\mathrm{T}_{8}-\left(\mathrm{T}_{8}-\mathrm{T}_{9 \mathrm{~s}}\right) \times \eta_{\mathrm{LT}}=923-(923-815.51) \times 0.85=831.63 \mathrm{~K}$
$\mathrm{W}_{\text {out }, \mathrm{LT}}=\mathrm{C}_{\mathrm{pg}}\left(\mathrm{T}_{8}-\mathrm{T}_{9}\right)=1.15(923-831.63)=105.08 \mathrm{~kJ} / \mathrm{kg}$

The rmalratio $=\frac{\mathrm{T}_{5}-\mathrm{T}_{4}}{\mathrm{~T}_{9}-\mathrm{T}_{4}}$
$0.75=\frac{\mathrm{T}_{5}-420.75}{831.63-420.75}$
$\mathrm{T}_{5}=728.91 \mathrm{~K}$
$\mathrm{q}_{\mathrm{in}}=\mathrm{C}_{\mathrm{pg}}\left(\mathrm{T}_{6}-\mathrm{T}_{5}\right)+\mathrm{C}_{\mathrm{pg}}\left(\mathrm{T}_{8}-\mathrm{T}_{7}\right)=1.15(923-728.91)+1.15(923-686.24)=495.47 \mathrm{~kJ} / \mathrm{kg}$
$\eta_{\text {cycle }}=\frac{\mathrm{W}_{\text {out , net }}}{\mathrm{q}_{\text {in }}}=\frac{105.08}{495.47}=0.2120$

This compares with the previous value of 28.73% when pressure losses are neglected.

The gross work of the plant is;
$\mathrm{W}_{\text {gross }}=$ Workout $_{\mathrm{HT}}+$ Workout $_{\mathrm{LT}}=272.27+\frac{105.08}{0.98}=379.49 \mathrm{~kJ} / \mathrm{kg}$

Workratio $=\frac{W_{\text {net }}}{W_{\text {gross }}}=\frac{105.08}{379.49}=0.2769$

Power $=\dot{\mathrm{m}} \times$ Workratio
$\dot{\mathrm{m}}=\frac{\text { Power }}{\text { Workout }_{\text {net }}}=\frac{5000}{105.08}=47.58 \mathrm{~kg} / \mathrm{s}$

