

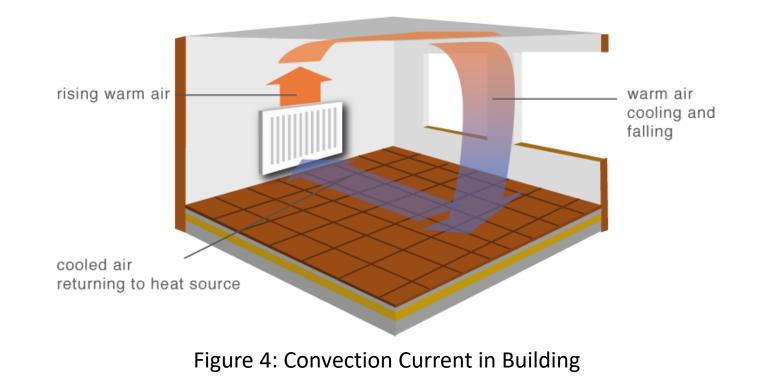
Measurement of TE Perodynamic Loads on When Albert Coefficted At Dof a Natural Ventilator "

WHAT IS VENTILATION?

- Is a process of circulating air in an enclosed area with atmosphere through stack effect. (Khan et al., 2008)

Figure 1: Ventilation Process

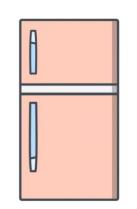
Figure 2: Stack Effect



BUOYANT FORCE

- Fluid with higher temperature, will have a lower density and rises up

Figure 3: Buoyant Force



HEAT SOURCES IN BUILDING

Human

Electrical Appliances

Radiation From Sun Through Windows

Cooking Appliances

OBJECTIVES

- 1. To design measurement techniques and further fabricate the experimental setup
- 2. To determine flow coefficient, Cf of the natural ventilator at different tilting angles

SCOPES

- The experimental will be executed at 0-6 m/s of wind speed using MD UTV 24" fully aluminum construction spherical turbine ventilator
- Experiment setup will be following Australian/New Zealand Standard 4720:2000
 - 5 Velocities for each testing setup (for every angle of attack)
 - Follow the experimental setup provided

WHY THIS TOPIC?

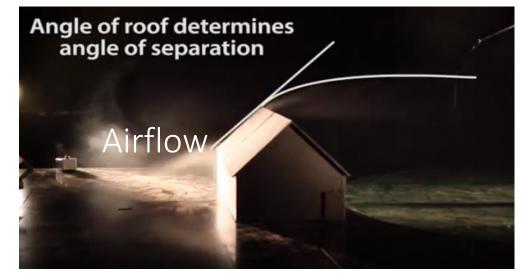
IMPORTANCE OF VENTILATION?

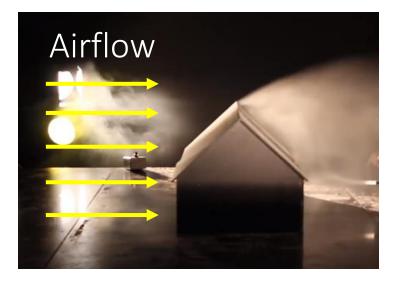
- 1. Important to keep enclosed breathing area with fresh and good quality air in which no known contaminants are present in harmful concentrations. (Oakley, 2002)
- More than 8000 chemical species have been identified in the indoor environment (Dichloroethane, Formaldehyde, Nitrogen Dioxide, etc) (Awbi, 1991)
- 3. Without ventilation, the effects are excessive humidity, condensation, overheating and build-up of odors (Khan et al., 2008).

WAY OF INSTALLATION

Some turbines are installed at an angle and some perpendicular to the ground

Figure 1: Ventilator Installed at an angle


Figure 2: Ventilator Installed at perpendicular to ground


Source (Figure 1): <u>https://www.indiamart.com/proddetail/natural-turbo-air-ventilator-15801340912.html</u> Source (Figure 2): Australian/New Zealand Standard 4740:2000

DIFFERENT AIRFLOW BEHAVIOR

8/31

STRUCTURE OF TURBINE VENTILATOR

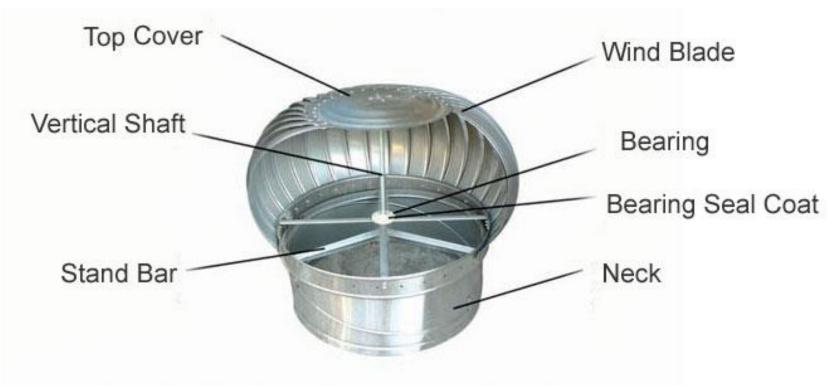
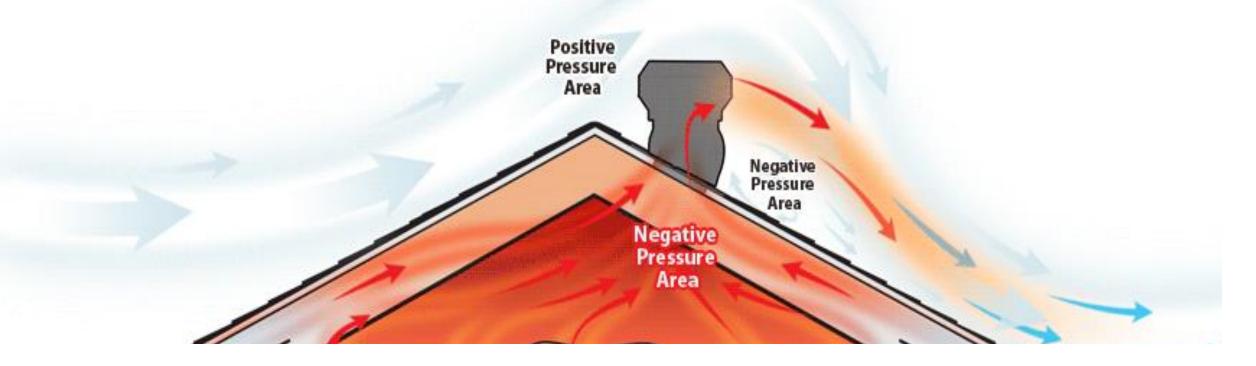



Image source: https://www.shirokoi.org

AIRFLOW THROUGH TURBINE VENTILATOR

HOW DOES IT WORK?

- 1. Hot air are accumulated in the attic
- 2. Hot air from attic flows through the turbine blades to outside of the house and rotates ventilator even with absence of breeze air
- 3. Presence of breeze air which pass through the turbine ventilator will rotate the turbine blades even faster
- 4. Negative pressure will be generated inside the turbine ventilator hence increase the flow rate of ventilation

TURBINE VENTILATORS (ACTIVE & PASSIVE)

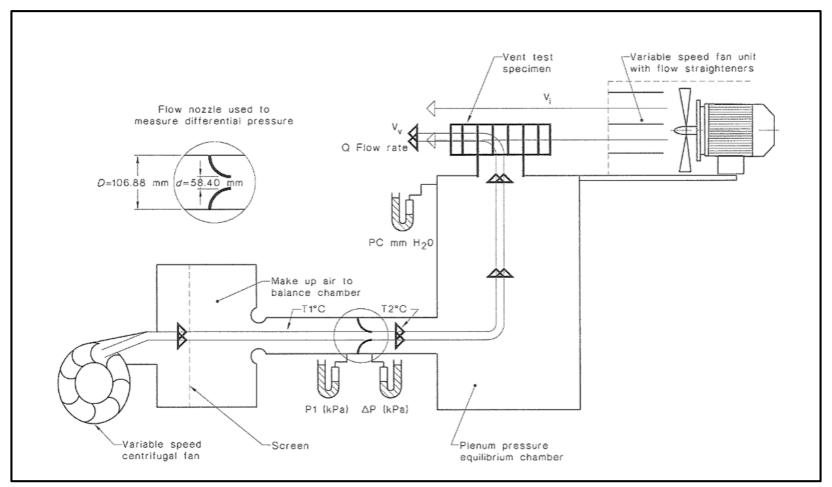
WIND DRIVEN VENTILATOR

ROTATING CHIMENY COWL (PASSIVE)

VERTICAL AXIS WIND EXTRACTOR (VAWTEX) (ACTIVE & PASSIVE)

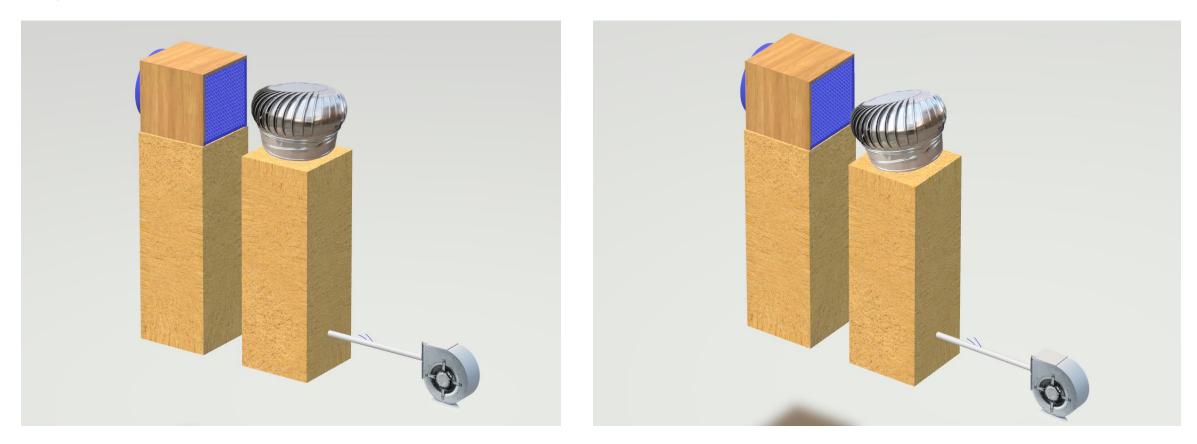
ECO POWER (ACTIVE)

12/31



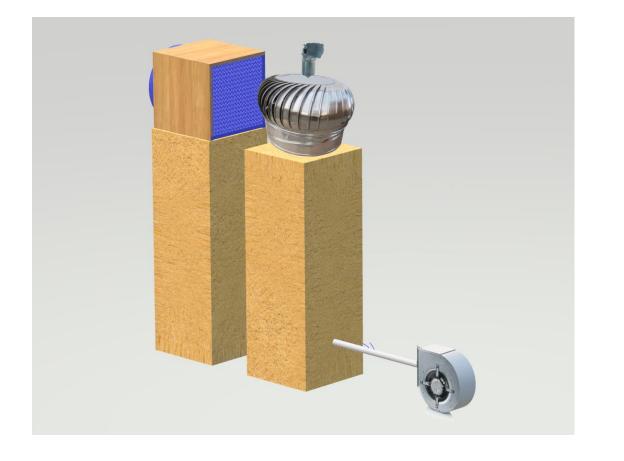
Source : <u>https://www.breezsol.com/product-</u> category/ventilation/roof-ventilation/ innovative • entrepreneurial • global

EXPERIMENTAL SETUP


Source: Australian/New Zealand Standard 4740:2000

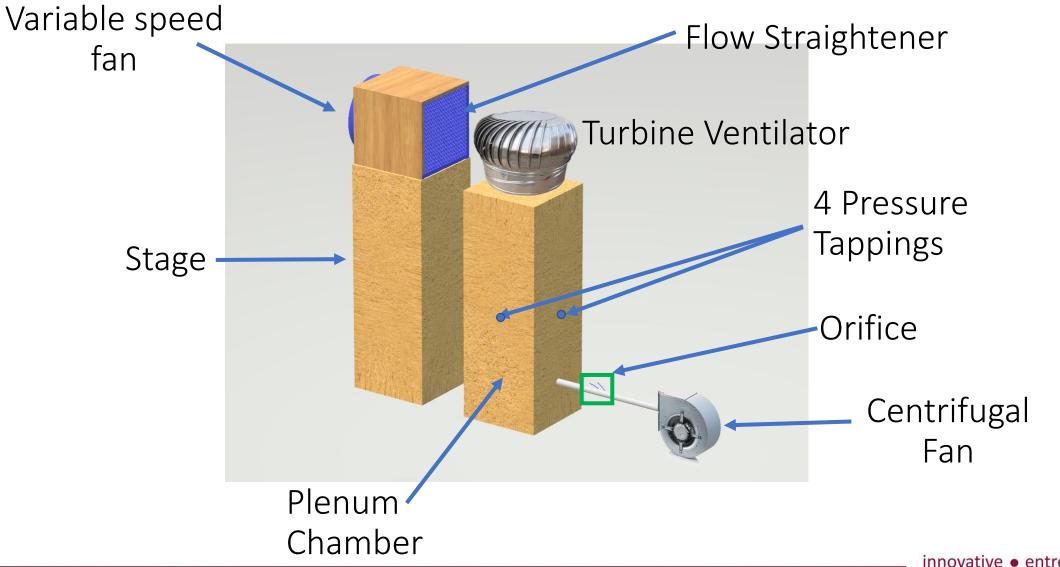
EXPERIMENTAL SETUP

Experiment 1



EXPERIMENTAL SETUP

Experiment 2



PARTS & COMPONENT

PARTS & COMPONENT

Variable Speed Fan

- Act as breeze air to drive turbine ventilator and should able to produce 5 different velocity

Optical Tachometer

- Used to measure the rotational speeds of the turbine ventilator

Centrifugal Fan

- Act as intake air from ambient into planum chamber

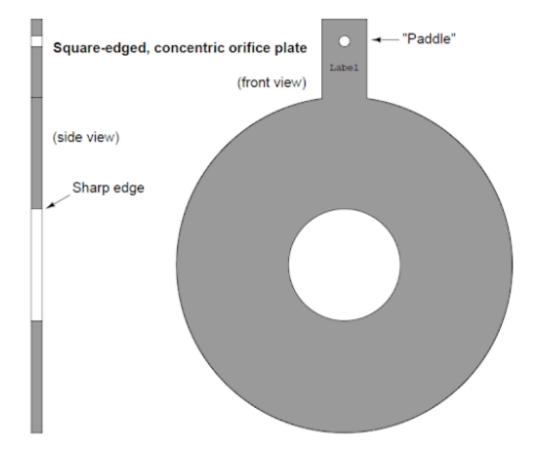
PARTS & COMPONENT

Orifice

 To measure the velocity of airflow from the centrifugal fan into the planum chamber refer to ISO 5801 for conical inlet arrangement & AS2360.1.1 for orifice arrangement

Plenum Chamber

 To force fresh air from atmosphere into a chamber to be ventilated, in which the pressure in chamber is slightly higher than atmospheric pressure [4]


Pressure Tappings

- To measure the average pressure inside the plenum and balancing chamber

ORIFICE PLATE SELECTION

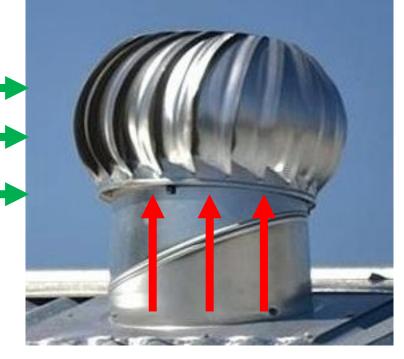
CONCENTRIC PLATE

- Minimize contact with the fastmoving moving fluid stream going through the hole
- RE = 20,000 10^7 (for pipes under six inches)
- May be installed in either direction

EXPERIMENT 1 SETTINGS

Parameter	Settings
Wind Speed	(0, 1, 2, 3, 4, 5, 6) m/s
Orifice	Concentratic Plate
Tilting Angle	0, 5, 10, 15, 20
Source of Turbine Rotation	Air Breeze

EXPERIMENT 2 SETTINGS


Parameter	Settings
Wind Speed	(0, 1, 2, 3, 4, 5, 6) m/s
Orifice	Concentratic Plate
Tilting Angle	0
Source of Turbine Rotation	Motor Driven

FLOW COEFFICIENT

 V_i , Velocity of free field Incident on ventilator

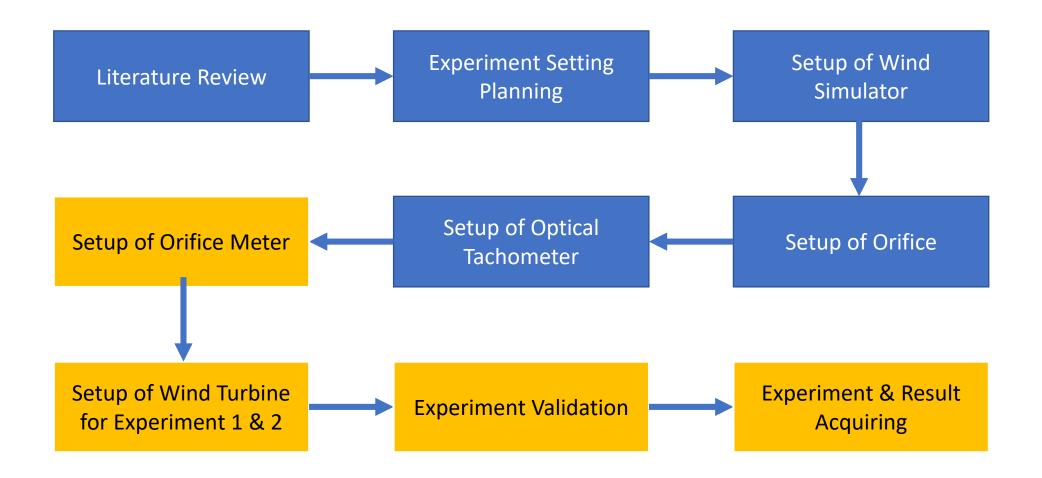
 V_{ν} , Velocity through test specimen

Flow Coefficient = ^vv,Velocity through ventilator throat Vi.wind speed actina on ventilator

y,measurea rate tnrougn ventuator Where V_{ν} =*A*+.*ventilator aeometric throat area*

CALCULATION VOLUME FLOW RATE

$$Q = C_f A_o \sqrt{\frac{2\Delta P}{\rho}}$$


Where:

- C_f = Obtained from experiments and is tabulated in reference books; it ranges from 0.6 to 0.9 for most orifices / ß ratio
- A_o = Area of orifice
- ΔP = Pressure difference between two locations before and after orifice
- ρ = Density of fluid

Research Flow Chart

Gantt Chart

TASK/WEEK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
First Meeting with Supervisor																
Filling UGP Forms																
Case Study																
Literature Review																
Presentation to Supervisor																
Designing Measurement Technique																
Report Writing																
Fabrication of Experimental Setup																
Validation of Experimental Setup																

TASK/WEEK	14	15	16	17	18	19	20
Preparation for Seminar Presentation							
Print Report							
Seminar Presentation							
Submission of Log Book							
Report Submission to Supervisor							
Repairing Report							
Report Submission to Faculty							

REFERENCE

Al-Obaidi, K. M., Ismail, M., & Abdul Rahman, A. (2014). Sustainable Cities and Society. A review of the potential of attic ventilation by passive and active, 232-240.

Awbi, & Hazim B. (2003). Ventilation of Buildings. London, England: Chapman & Hall.

Dale, J., & Ackerman, M. (1993). Evaluation of the Performance of Attic Turbine Ventilators. ASHRAE Transactions, , Vol.99, pt.1.

Etheridge, D. (2012). *Natural Ventilation of Buildings*. Chichester, West Sussex, UK: John Wiley & Sons Ltd.

- Global Climate Change. (2019, April 24). Retrieved from Global Temperature: https://climate.nasa.gov/vital-signs/global-temperature/
- Jadhav, G. K., Ghanegaonkar, P., & Garg, S. (2016). Experimental and CFD Analysis of Turbo Ventilator. *Journal of Building Engineering 6*, 196-202.

REFERENCE

Khan, N., Su, Y., & Riffat, S. (2008). A review on wind driven ventilation techniques.

Khan, N., Su, Y., & Riffat, S. B. (2008). Energy and Buildings. A review on wind driven ventilation techniques, 1586-1604.

- Lai, C. M. (2003). Experiments on the Ventilation Efficiency of Turbine Ventilators used for Building and Factory Ventilation. Energy and Buildings, 927-932.
- Lai, C. M. (2006). Prototype Development of the Rooftop Turbine Ventilator Powered by Hybrid Wind and Photovoltaic Energy. *Energy and Buildings*, 174-180.
- Lai, C., & Kuo, I. (2005). Assessment of the Potential of Roof Turbine Ventilators for Bathroom Ventilation. *Building Services Engineering Research and Technology*, 173-179.
- Lien, J., & Ahmed, N. (2011). Wind Driven Ventilation for Enhanced Indoor Air Quality. In N. Mazzeo, *Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality*.
- McQuiston, F. C., Parker, J. D., & Spitler, J. D. (2005). *Heating, Ventilating and Air Coditioning: analysis and design, 6th edition.* Hoboken, New Jersey: John Wiley & Sons.

REFERENCE

Rashid, D. H., & Ahmed, N. A. (2003). Study of Aerodynamic Forces on a Rotating Wind. *Wind Engineering*. 27., 63-72.

Santamouris, M. (2005, January). Passive cooling of buildings. Advances of Solar Energy.

Straw, M. P., Baker, C. J., & Robertson, A. P. (2000). Experimental measurements and computations of the wind-induced ventilation of a cubic structure. *Journal of Wind Engineering and Industrial Aerodynamics*, 213-230.

Oakley, G. (2002). A combined day Lighting, Passive Stack Ventilation & Solar Heating System. University of Nottingham

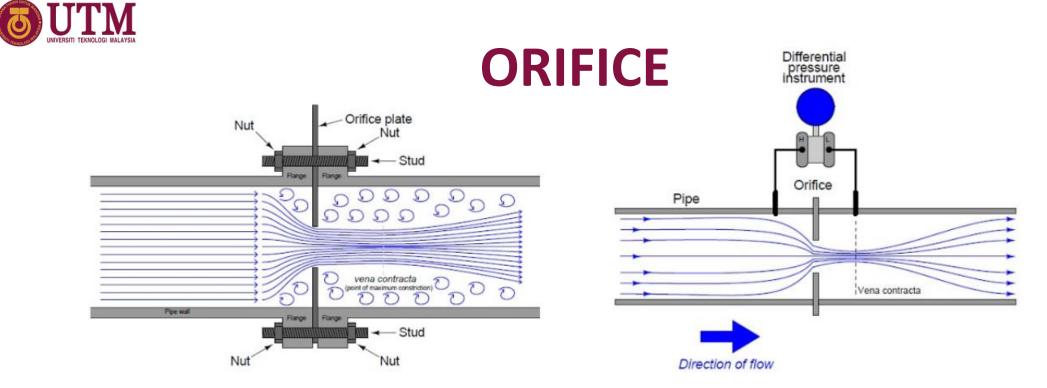
Australian/New Zealand Standard for Natural Air Ventilator, 2000

http://instrumentationbasicss.blogspot.com/2017/10/types-of-orifice-plates.html?view=sidebar

http://instrumentationbasicss.blogspot.com/2017/09/

http://www.alternative-energy-tutorials.com/energy-articles/wind-turbine-blade-design.html

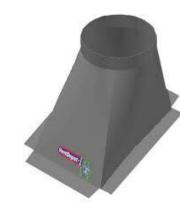
www.utm.my innovative • entrepreneurial • global


Q&A SESSION

innovative • entrepreneurial • global

APPENDIX

innovative • entrepreneurial • global


- 1. Fluid will increase in pressure a little bit when closer to orifice and will drop suddenly when pass through the orifice
- 2. The pressure continue to decrease until it reach "vena contracta" then starts to increase gradually
- 3. Beta Ratio for gas fall between 0.2 0.7 (best result 0.4 0.6)

	TAE	LE 20.*	DISCHAR	GE COEF	FICIENT	S FOR V	ENA CON	TRACTA	TADE	
							Lini con	INAUIA	IAIB	
					2 INCH LI	NE				
β					REYNOLD	S NUMBER	1			
P	10,000	15,000	25,000	35,000	50,000	75,000	100,000	150,000	250,000	500,000
0.100	0.6195	0.6148	0.6106	0.6083	0.6061	0.6041	0.6031			-
0.150	0.6133	0.6097	0.6059	0.6039	0.6022	0.6004	0.5995			
0.200	0.6098	0.6067	0.6035	0.6020	0.6004	0.5989	0.5981	0.5971		
0.250	0.6090	0.6062	0.6035	0.6020	0.6007	0.5995	0.5988	0.5978		
0.300	0.6109	0.6082	0.6056	0.6041	0.6029	0.6018	0 0010	0.0001	0 1000	
0.350	0.6150	0.6123	0.6096	0.6081	0.6068	0.6018	0.6016	0.6001	0.5993	
0.400	0.6214	0.6185	0.6154	0.6138	0.6125	0.6111	0.6048	0.6039	0.6030	
0.450		0.6261	0.6229	0.6212	0.6197	0.6182	0.6173	0.6093	0.6084	0.6074
					0.0101	0.0102	0.0175	0.0105	0.6155	0.6144
0.500		0.6361	0.6327	0.6308	0.6293	0.6277	0.6268	0.6257	0.6247	0.6236
0.550			0.6454	0.6433	0.6418	0.6401	0.6390	0.6379	0.6368	0.6357
0.600				0.6601	0.6582	0.6565	0.6553	0.6541	0.6530	0.6516
0.625					0.6684	0.6666	0.6654	0.6639	0.6628	0.6613
0.650					0.6802	0.6782	0.6768	0.6753	0.6740	0.6724
0.675					0.6938	0.6916	0.6900	0.6884	0.6870	0.6852
0.700					0.7095	0.7070	0.7054	0.7034	0.7018	0.7000
0.725					0.7280	0.7250	0.7233	0.7212	0.7191	0.7169
0.750		The second			0.7496	0.7460	0.7440	0.7417	0.7392	0.7368
0.775						0.7709	0.7440	0.7417	0.7634	0.7607
0.800		•••				0.8012	0.7988	0.7960	0.7930	0.7900
	ALC: STATISTICS				Contraction of the	0.8395	0.8370	0.8340	0.8306	0.8273

NECK OF TURBINE VENTILATOR

Slope Roof Mounted Base Can be used for small, medium and large area

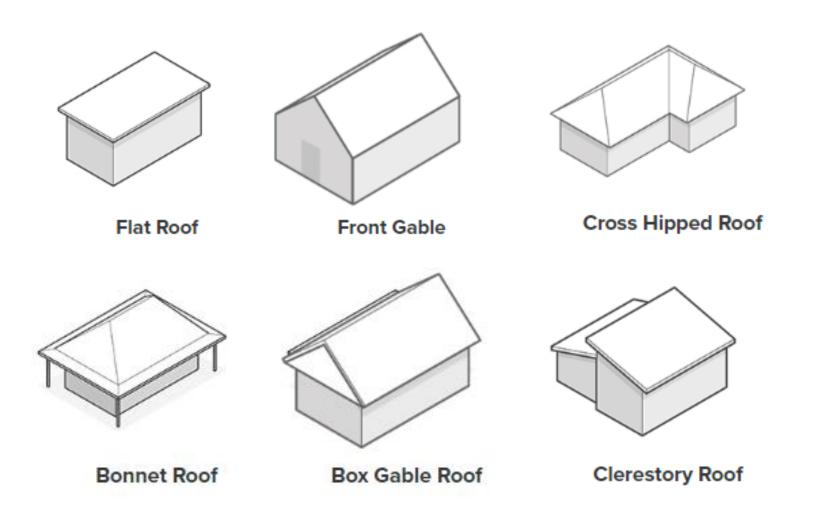


Flexible Adaptable Throat Better Water resistance and customized for specific tilting angle

Cylindrical Adjustable Base Easily adjusted to fit roof angle


PRESSURE TAPPINGS

TURBINE VENTILATOR WITH MOTOR


ORIFICE SETUP

OPTICAL TACHOMETER

TYPES OF ROOF

