

Design The Vertical Take-Off Landing (VTOL) Aircraft for Land Surveying

Prepared by: Shahdan bin Azman Supervisor : Dr. Nazri Nasir

- I. Project background
- 2. Problems statement
- 3. Objectives
- 4. Research scopes
- 5. Literature reviews
- 6. Methodology
- 7. Expected outcomes
- 8. Gantt chart
- 9. Results and Discussions
- 10. Recommendation
- II. Conclusion

Project Background

Problems statement

- Launching and landing access is difficult for fixedwing platforms especially in the jungle.
- Crashes due to hard landing that will cause structure failure on the aircraft.

Objectives

- To design a VTOL aircraft using parametric study and fundamental aircraft design.
- To find the aerodynamic characteristic of the VTOL aircraft.
- To make performance analysis of the VTOL aircraft.
- To prepare the preliminary design of the aircraft before fabrication process conducted.

Research scopes

- Feasibility study on related existing aircraft.
- Conceptual and preliminary design process of an aircraft.
- Aerodynamic analysis using ANSYS Fluent.
- Performance analysis of VTOL aircraft.

Literature reviews

- Aircraft design process
 - The fixed wing VTOL aircraft require different aspects of aerodynamic, propulsive and control methodologies for hover stability, transition and conventional flight phases (Oznalbant and Kavsaoglu, 2015).
- VTOL design consideration
 - The total moment about the aircraft cg must be sustained zero together with aerodynamics and thrust forces considerations during transitions flight (Oznalbant and Kavsaoglu, 2015).
- Aerodynamic forces
 - Two forces that are considered as aerodynamic forces which are lift and drag as both are produced when the aircraft move through air mass (Pedro , 2005).

Literature reviews

- Material
 - Foam's strength is lower than balsa's strength but the stiffness is comparable to balsa wood besides lower in density than woods (Carlos). Carbon fibre is a better solution but will increase difficulty in fabrication (Andrew et al., 2011).
- Propulsion system
 - More tailored propulsion system must be constructed to achieve the mission if the endurance requirement are more strict (Michael and Thomas, 2005).
- Test flight
 - The risks in the first flight can be reduced by having it tested on a loose cable from a tower crane (Seong et al., 2012)

Schedule Planning

Weight estimation

• The weight of electric-powered aircraft consist only two main type of load which are:

 $W_0 = W_{payload} + W_{empty}$

Parametric study

- Parametric study will be conducted based on several existing small aircraft used for land surveying.
- Equations obtained is used for aircraft initial sizing.

Parameters		Parameters
Maximum take-off	VS	Endurance
weight		Wing Span
		Fuselage length
		Empty weight
		Payload
Endurance	VS	Wing Span

Airfoil selection

- Airfoil selection is based on the existing aircraft airfoil shape.
- Selection is made based on the manufacturability of the airfoil.
- Approximately, N-10 is the closest profile to the existing aircraft.
- N-10 has flat surface at the bottom, easier to attach to the fuselage.

Preliminary sizing

- Wing and tail configurations are chose based on its simplicity.
- Wing sizing will be based on the desired aspect ratio(AR).
- Tail sizing will be based on the required moment to control aircraft pitching behaviour.
- Fuselage sizing depends on the components required for the pilot's mission.

Centre of gravity management

- All the basic centre of gravity (empty weight cg, aft cg, forward cg and max cg) will be referred on Raymer (2006).
- Max cg will be located near as possible to the VTOL motor position.

Aerodynamic Analysis

- ANSYS-Fluent is used to find the aerodynamic of the whole body of the aircraft.
- Simple meshing and Fluent default setting are used to reduce further considerations.

Mes	hing	Fluid Flow	v (Fluent)
Advanced size function	On: Proximity and curvature	Turbulence model	Standard k-epsilon (2 equation)
Relevance centre	Medium	Iteration	2000
		Reference velocity	I2 m/s
		Density	1.225 kg/m ³
		Kinematic viscosity	1.7894 x 10 ⁻³ kg/ms

www.utm.my

Preliminary performance analysis

- Motor and battery technical specification is limited to the data provided manufacturer.
- Two type of performance analysis:

Standard Take-Off Landing

Power available and Power required

Thrust available and thrust required

Rate of climb

Range and endurance

Vertical Take-Off Landing

Vertical take-off rate

Battery usage

Current selection

VTOL Motor Configurations

Quad-rotor has been chose as the flight condition is easier to understand and more reliable than bi-rotor and tri-rotor.

Quad-rotor produce more thrust and more stable.

www.utm.my

VTOL Analysis

Using Newton's 2nd Law of motion and equation of motion to find the take-off and landing rate.

www.utm.my

Optimization

- The design of the aircraft will be optimized in order to achieve the desired specification set earlier.
- Using Solidworks to virtually position all the components in the aircraft.

Considerations in optimization

Components position

Material improvement

Structural modification

Power source variation

- All dimensions of the aircraft will be prepared through this process before it will be fabricate.
- Fabrication procedures will be prepared so the fabrication process will be conducted smoothly.

Expected outcomes

- A complete design of VTOL aircraft is prepared for the fabrication.
- Valid data obtained from analysis conducted compared to recent research.

Results and Discussions

innovative • entrepreneurial • global

25 www.utm.my

Endurance (min) versus MTOW (kg)

Endurance (mins) versus Wingspan (m)

Graph		Linear equations derived	
x-axis	y-axis		
MTOW	Wingspan	y = 0.0975 x +1.3908	
MTOW	Empty weight	y = 0.9767 × -1.673	
MTOW	Fuselage length	y = 0.0466 x + 0.9142	
MTOW	Payload	y = 0.0233 x +1.673	
MTOW	Endurance	y = 22.998 × - 24.957	
Wingspan	Endurance	y = 138.71 x - 183.42	

Initial sizing and weight estimation

• By referring to Raymer (2006), the initial sizing of the aircraft is presented in the table given.

Parameters	Values	Unit	Remarks
Aspect Ratio	10.000	-	Assumption
Wing mac	0.200	m	Testing
Wing Span	2.000	m	
Wing Area	0.400	m²	

Parameters	Values	Unit	Remarks
Fuselage Length	1.206	m	Raymer (2006)
Aileron Chord	0.050	m	
Aileron Span	0.800	m	
Elevator Chord	0.043	m	
Elevator Span	0.647	m	
Rudder Chord	0.058	m	
Rudder Span	0.242	m	
Maximum Take-off Weight	6.256	kg	Parametric study
Payload	1.819	kg	Parametric study

Parameters	Values	Unit	Remarks
Horizontal Tail	6.000	-	Raymer
Aspect Ratio			(2006)
Horizontal Tail	0.400	-	Raymer
Taper Ratio			(2006)
Horizontal Tail	0.154	m	
Root Chord			
Horizontal Tail	0.062	m	
Tip Chord			
Horizontal Tail	0.108	m	
mac			
Horizontal Tail	0.647	m	
Span			
Horizontal Tail	0.070	m ²	
Area			
Horizontal Tail	0.573	m	
Arm			

Parameters	Values	Unit	Remark
			S
Vertical Tail	2.091	-	
Aspect Ratio			
Vertical Tail	0.500	-	Raymer
Taper Ratio			(2008)
Vertical Tail Root	0.154	m	
Chord			
Vertical Tail Tip	0.077	m	
Chord			
Vertical Tail mac	0.116	m	
Vertical Tail Span	0.242	m	
Vertical Tail Area	0.028	m ²	
Vertical Tail Arm	0.573	m	

28

www.utm.my

UTTM UNIVERSITI TEKNOLOGI MALAYSIA

- Aspect ratio is 10 to provide better lift-to drag ratio.
- Less airspeed needed for specific lift value.
- Wing shape is a straight wing without taper ratio and sweep angle because of fabrication limitation.
- Max aircraft weight adjusted to
 2.6 kg due to components listing.
- Conventional tail has been used for the aircraft.
- High wing configuration for better stability and clearance for the propeller.

Aircraft weight

Items	Weight (kg)	Remarks
Wing	0.192	EPF Foam
Frame	0.564	Aluminium
Emphennage	0.193	EPF Foam
Fuselage	0.281	EPF Foam
Servo	0.040	Towerpro
Propulse motor	0.210	SunnySky X3520
VTOL motors	0.312	SunnySky X2212
Camera	0.263	Sony RX100 iii
Battery	0.380	Infinity 4s 14.8V 5200mAh 35c Lipo Battery
ESC	0.228	Turnigy Plush 100 A Hobbywing Skywalker 30 A
Receiver	0.017	FlySky

Maximum aircraft weight = 2.68 kg

Difference compared to initial sizing weight = 6.256 – 2.68 = 3.576 kg

Reduce excess power by using optimized motor

Conceptual Design

Centre of gravity management

Maximum CG is at 442.11mm from the aircraft nose. It is aligned with the position of

www.utm.my

VTOL mechanism.

VTOL Model Lift Coefficient, C_L

- Aircraft stalling angle is at 18°.
- Max C_L is 0.92.
- Zero-lift angle of attack is at -5.8°.
- Cruising speed of aircraft is 16.044 m/s at 0° angle of attack.
- Min airspeed is 10.84 m/s at max C_L.

www.utm.my

VTOL Model Drag Coefficient, C_D

 Minimum drag is on zero angle of attack.

www.utm.my

VTOL Model Moment Coefficient, C_M

Drag Polar

- Minimum drag occur at angle of attack 0° with positive lift coefficient.
- Drag Polar
 Theory by Anderson, 1999 stated that in real case, zero lift drag would result slightly higher parasite drag than minimum drag

Power available and required

Airspeed limit of the aircraft's horizontal flight is 28.4 m/s.

Thrust available and required

Minimum thrust required is 2.4 N at airspeed of 14 m/s.

Rate of climb

- Maximum excess power is 395.77 Watt at 100% throttle.
- Maximum rate of climb is 14.9 m/s due to maximum excess power.
- The airspeed for maximum rate of climb is 10 m/s at angle of attack 18°

Airspeed, V (m/s)

20

10

Rate of Climb

Range and Endurance

	Distance
Cruising range (at 16.04 m/s)	73.62 km
Cruising endurance (at 16.04 m/s)	115.09 mins
Max range (at 14 m/s)	92.31 km
Max endurance (at 14 m/s)	128.88 mins

VTOL Analysis

	Vertical Take-off	Vertical Landing
Current discharge (A)	68.8	10.4
Battery usage (mAh)	126.01	45.68
Time taken (s)	6.59	10.54

VTOL Analysis

- More battery charge used during vertical take-off.
- Less battery usage during vertical landing with less current discharged but increase impact force.

Detail Design

innovative • entrepreneurial • global

Recommendations

- Transition flight analysis for better VTOL analysis.
- Optimized the propulsion system since too much of excess power.
- Wind tunnel testing for precise aerodynamic characteristic.
- Stability analysis to study aircraft's flight condition especially during transition flight.

Conclusion

- Feasibility study and initial done by using Raymer 's approach in aircraft design.
- Preliminary design and detail design done by using Solidworks.
- Aerodynamic characteristic of VTOL aircraft obtained through ANSYS software.
- VTOL motor used is sufficient since not much of battery being used.
- Feasible result of horizontal flight performance analysis.

THANK YOU

innovative • entrepreneurial • global