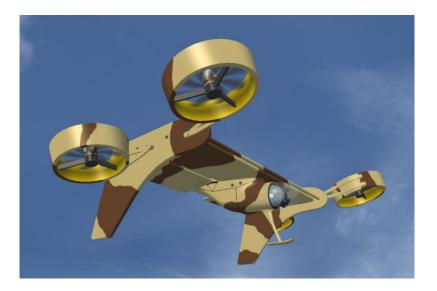


NUR AIZAT NAZIHAH BINTI AZMI


## DEVELOPMENT OF THE VERTICAL TAKE-OFF LANDING (VTOL) AIRCRAFT

SUPERVISOR : DR MOHD NAZRI NASIR CO-SUPERVISOR : PROF IR. DR. SHUHAIMI MANSOR

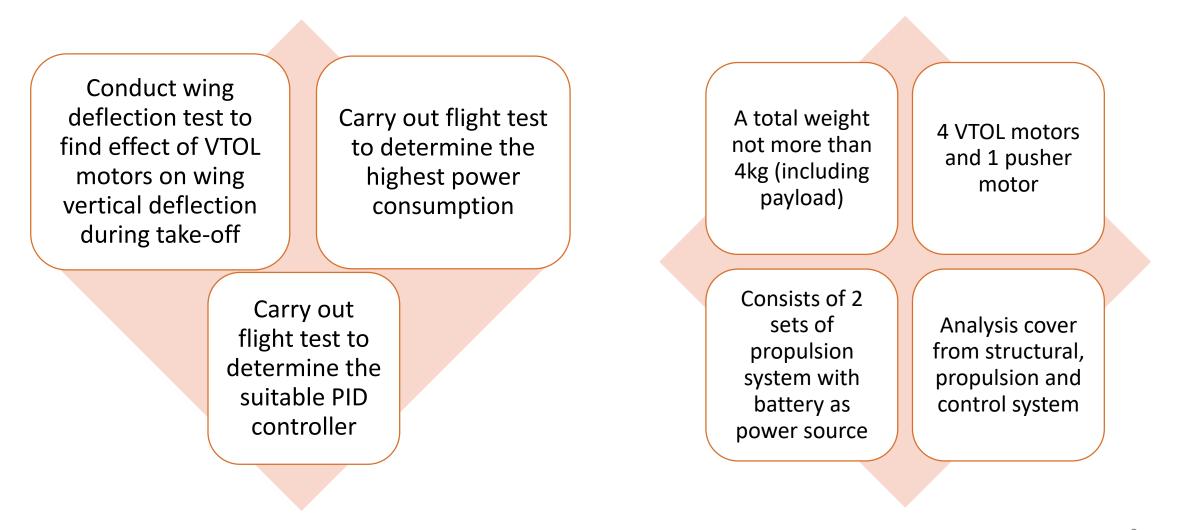
innovative • entrepreneurial • global



# VTOL



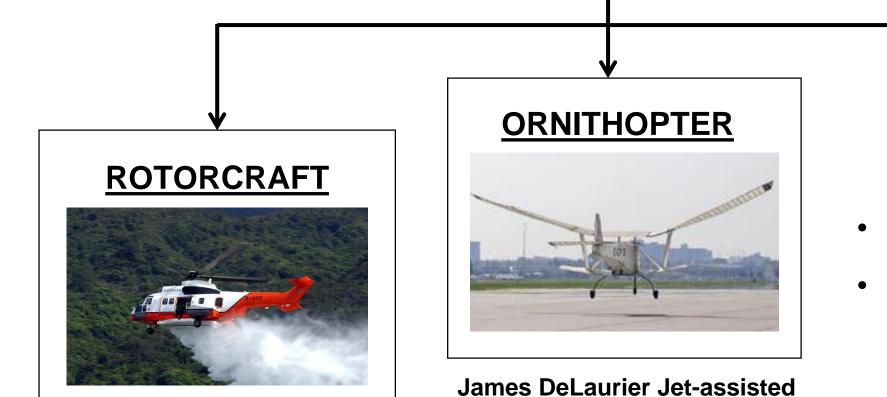
Capable to take-off, hover and land vertically


## PROBLEM IDENTIFICATION

- Extra aerodynamic drag results in additional burden to the pushers
- Extra unnecessary weight coming from the VTOL motors itself
- The overlapped thrust during the transition flight mode



## **OBJECTIVES**






innovative  $\bullet$  entrepreneurial  $\stackrel{\circ}{\bullet}$  global

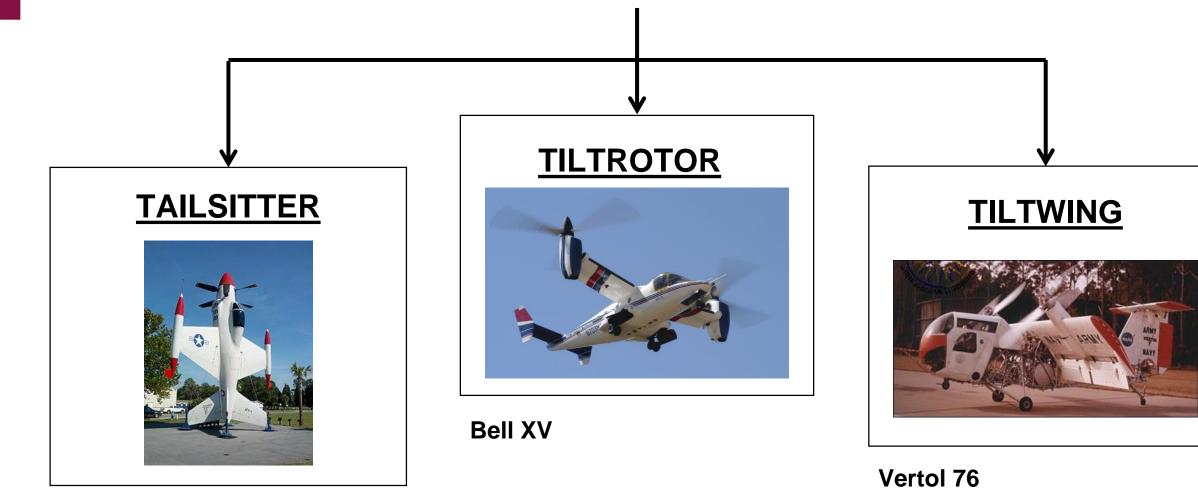


## CATEGORIES



Ornithopter

#### **FIXED WING**


- Single System
- Dual System

#### AS332

innovative  $\bullet$  entrepreneurial  $\stackrel{4}{\bullet}$  global



### **SINGLE SYSTEM**



Lockheed XFV<sup>2.</sup>

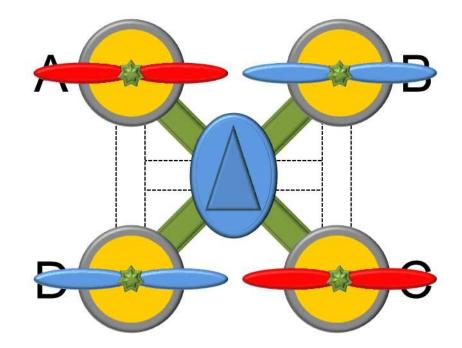


# **ROTOR FIXED-WING UAV**

• Combine fixed wing and rotor type of UAV. (Gunarathna & Munasinghe, 2018)



Quadcruiser by Airbus Group


The Arcturus UAV JUMP by Arcturus UAV



HQ-60 Hybrid Quadrotor by Latitude Engineering



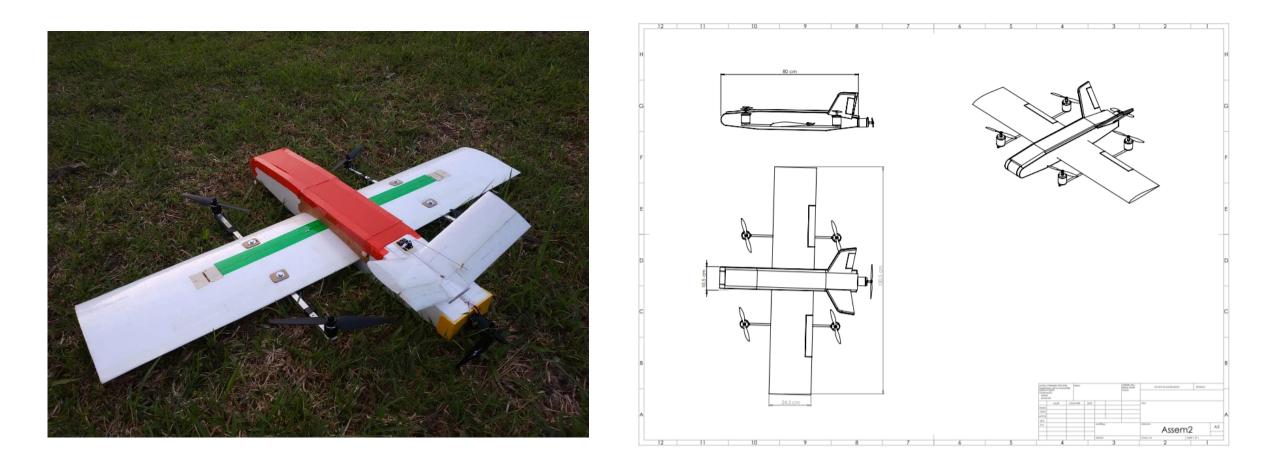
### **QUAD-ROTOR CONFIGURATION**









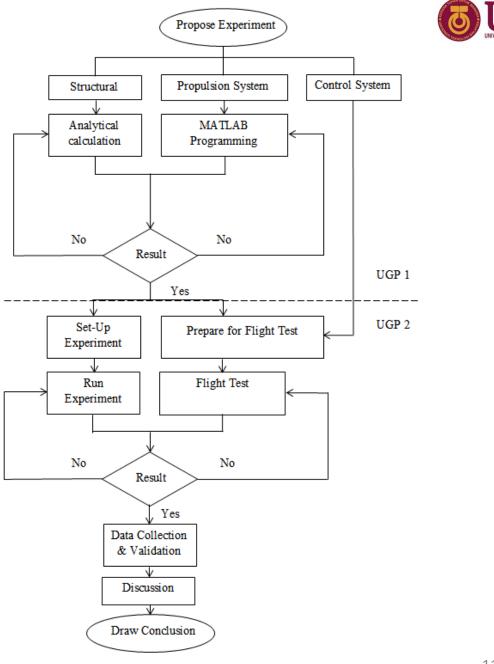



innovative • entrepreneurial • global

innovative  $\bullet$  entrepreneurial  $\stackrel{8}{\bullet}$  global



### **REFERENCE UAV**

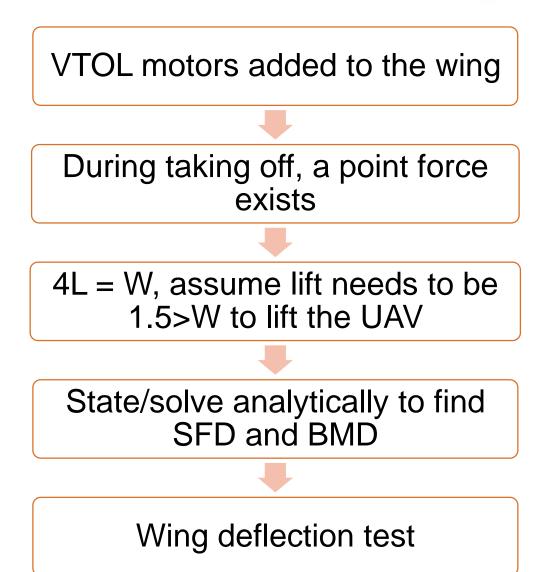





## **UAV WEIGHT**

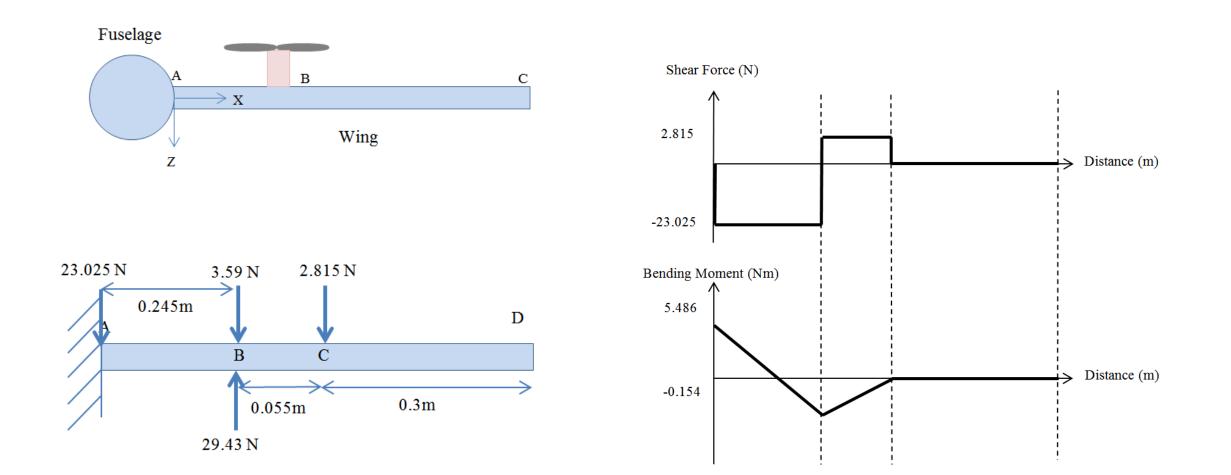
| No. | Components/Parts          | Unit | Weight<br>per unit<br>(kg) | Total<br>Weight (kg) | Weight<br>Distribution<br>(%) |
|-----|---------------------------|------|----------------------------|----------------------|-------------------------------|
| 1   | Motor and propeller       |      |                            |                      |                               |
|     | Front VTOL                | 2    | 0.183                      | 0.366                | 9.53                          |
|     | Rear VTOL                 | 2    | 0.183                      | 0.366                | 9.53                          |
|     | Pusher                    | 1    | 0.183                      | 0.183                | 4.77                          |
| 2   | Metal bar                 | 2    | 0.057                      | 0.114                | 2.97                          |
| 3   | Servo                     | 2    | 0.014                      | 0.028                | 0.73                          |
| 4   | Battery                   | 1    | 0.452                      | 0.452                | 11.77                         |
| 5   | Fuselage                  | 1    | 0.800                      | 0.800                | 20.83                         |
| 6   | Wing with spar            | 2    | 0.287                      | 0.574                | 14.95                         |
| 7   | V-Tail                    | 1    | 0.300                      | 0.300                | 7.81                          |
| 8   | Arduino                   | 1    | 0.046                      | 0.046                | 1.19                          |
| 9   | ESC                       | 1    | 0.097                      | 0.097                | 2.53                          |
| 10  | Telemetry                 | 1    | 0.021                      | 0.021                | 0.55                          |
| 11  | GPS Module                | 1    | 0.033                      | 0.033                | 0.86                          |
| 12  | Receiver                  | 1    | 0.034                      | 0.034                | 0.89                          |
| 13  | Others (wires, glue, etc) | -    | -                          | 0.300                | 7.81                          |
|     | TOTAL WEIGHT              | 3.84 | 100                        |                      |                               |

# METHODOLOGY





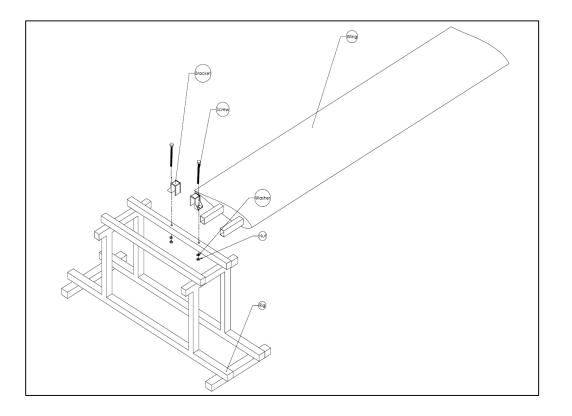

## STRUCTURAL ANALYSIS

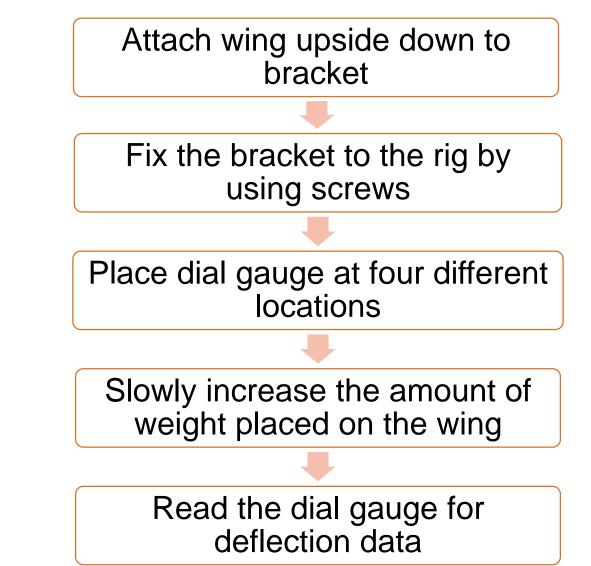

Objective: To find the effect of VTOL motors on wing

vertical deflection



innovative  $\bullet$  entrepreneurial  $\stackrel{12}{\bullet}$  global








### DEFLECTION TEST

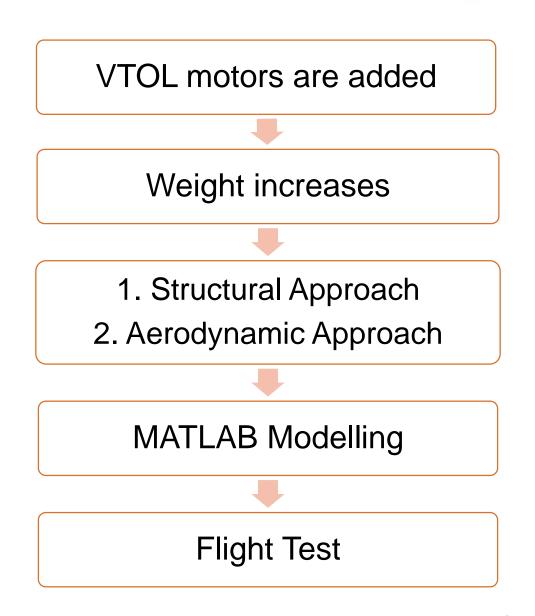




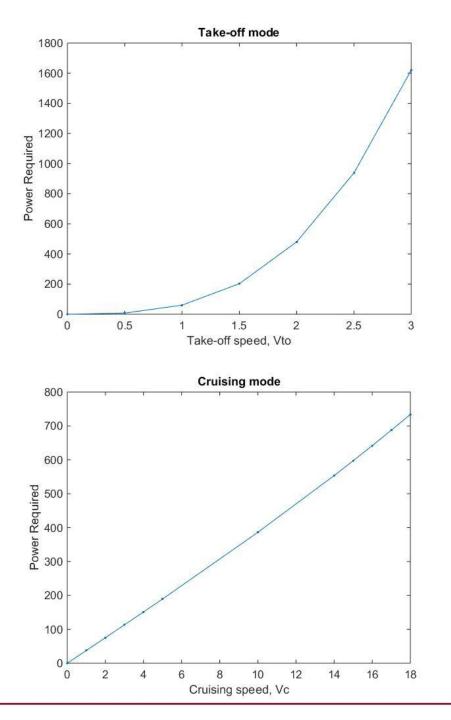
innovative  $\bullet$  entrepreneurial  $\overset{14}{\bullet}$  global



|    | Velocity | Force  | Weight | Deflection at wing |       |            | ng  |
|----|----------|--------|--------|--------------------|-------|------------|-----|
| Νο | (m/s)    | (N)    | (kg)   | Root               | Motor | Middl<br>e | Тір |
| 1. | 0        | 0      | 0      |                    |       |            |     |
| 2. | 0.5      | 1.458  | 0.15   |                    |       |            |     |
| 3. | 1.0      | 5.832  | 0.60   |                    |       |            |     |
| 4. | 1.5      | 13.121 | 1.35   |                    |       |            |     |
| 5. | 2        | 23.328 | 2.40   |                    |       |            |     |
| 6. | 2.5      | 36.449 | 3.70   |                    |       |            |     |
| 7. | 3.0      | 52.488 | 5.35   |                    |       |            |     |

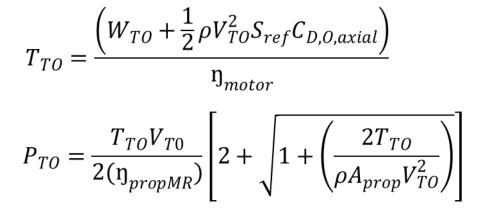

 $T_{TO} = \frac{\left(W_{TO} + \frac{1}{2}\rho V_{TO}^2 S_{ref} C_{D,O,axial}\right)}{\eta_{motor}}$ 






## PROPULSION SYSTEM

Objective: To determine the highest power consumption among all flying modes




innovative  $\bullet$  entrepreneurial  $\stackrel{16}{\bullet}$  global



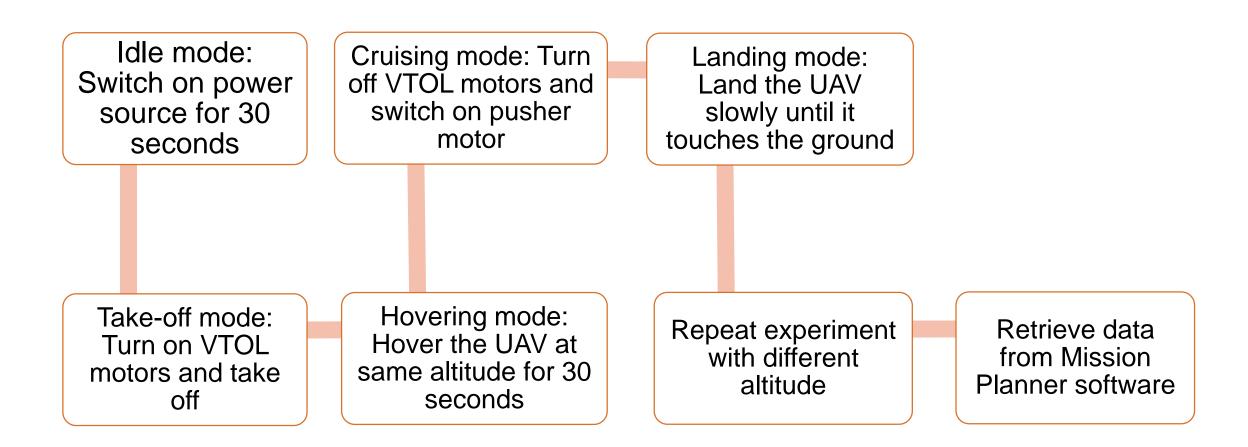
Multi-rotor





$$P_{H} = \frac{\left(\frac{W_{TO}}{\eta_{motor} \times N}\right)^{3/2}}{\eta_{propMR} \sqrt{2\rho \times A_{prop}}}$$

Cruising


$$T_{R} = D = \frac{1}{2}\rho v^{2}SC_{D/0} + \frac{1}{2}\rho v^{2}S\frac{C_{L}^{2}}{\pi eAR}$$

$$P_R = T_R \times V$$

innovative  $\bullet$  entrepreneurial  $\stackrel{17}{\bullet}$  global



## **FLIGHT TEST**



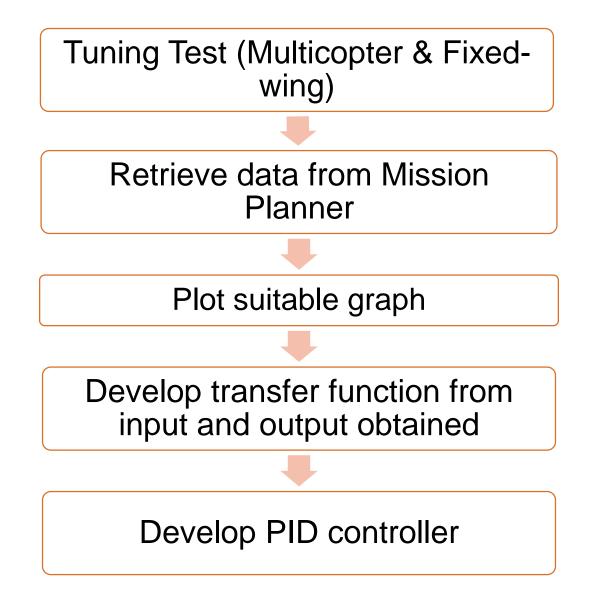
innovative  $\bullet$  entrepreneurial  $\stackrel{18}{\bullet}$  global



# CONTROL SYSTEM

Objective: To develop a simple PID controller

During transition, overlapping thrust (perturbation)


Cause the aircraft to become unstable.

Problem: How long does it take for the aircraft to back to the original horizontal position?

Tuning test to find value of P, I and D gain

**Develop PID controller** 





### **GANTT CHART**









### **CHAPTER 2: LITERATURE REVIEW**



| No | Author           | Title                                                                     | Knowledge                         |
|----|------------------|---------------------------------------------------------------------------|-----------------------------------|
| 1. | L.Kohlman        | Introduction to V/STOL Airplanes                                          | Definition VTOL                   |
| 2. | Intwala & Parikh | A Review on VTOL Vehicles                                                 | Definition VTOL                   |
|    | L.Kohlman        | Introduction to V/SIOL Airplanes                                          | VTOL advantages and disadvantages |
| 3. |                  | A Survey of Hybrid Unmanned Aerial<br>Vehicle                             | VTOL Category                     |
| 4. | McCornick        | Aerodynamics of V/STOL Flight                                             | Tiltwing aircraft                 |
| 5. | Gerdes & Gupta   | A Review of Bird -Inspired Flapping Wing<br>Miniature Air Vehicle Designs | Ornithopter                       |



| 6. | Reg Austin                                                     | Unmanned Aircraft Systems UAVs Desugn, development and Deployment                                                 | Definition UAS         |  |
|----|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------|--|
| 7. | Gunarathna and<br>Munasinghe                                   | Development of a Quad-rotor Fixed-<br>wing Hybrid Unmanned Aerial Vehicle                                         |                        |  |
| 8. | Abd Rahman,<br>Hajibeigy, Al-Obaidi<br>& Cheah                 | Design and Fabrication of Small VTOL<br>UAV                                                                       | Type of UAV            |  |
| 9. | Md. Shamim, Tariq &<br>Kazi                                    | Development Of A Multi-purpose<br>Hybrid & Portable Surveillance Drone<br>For<br>Security and Disaster Management | Usage of UAV           |  |
| 10 | Tielin, Chuanguang,<br>. Wenbiao, Zihan,<br>Qinling and Xiaoou | Analysis of Technical Characterisitics of<br>Fixed-Wing VTOL UAV                                                  | Category of hybrid UAV |  |



| No  | Author                                          | Title                                                                     | Knowledge                               |  |
|-----|-------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|--|
|     | Gunarathna &<br>Munasinghe                      | Development of a Quad-rotor Fixed-<br>wing Hybrid Unmanned Aerial Vehicle | Advantages of Quad-rotor Fixed-<br>wing |  |
|     | Abd Rahman,<br>Hajibeigy, Al-<br>Obaidi & Cheah | Design and Fabrication of Small VTOL<br>UAV                               |                                         |  |
|     | Abd Rahman,<br>Hajibeigy, Al-<br>Obaidi & Cheah | Design and Fabrication of Small VTOL<br>UAV                               | Quadcopter mechanism                    |  |
|     | Abd Rahman,<br>Hajibeigy, Al-<br>Obaidi & Cheah | Design and Fabrication of Small VTOL<br>UAV                               | VTOL flying mode                        |  |
| 11. | Resnick &<br>Halliday                           | Fundamental of Physics                                                    | Newton's Law                            |  |



| No  | Author                                                                                                                 | Title                                                                                 | Knowledge                                     |
|-----|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------|
| 12. | Gunasegaran<br>Kanesan                                                                                                 | Validation of UAV Wing Structural<br>Model for Finite Element Analysis                | Experimental Set-Up for Structure<br>Analysis |
| 13. | Dr. S. P. Tayal                                                                                                        | Engineering Design Process                                                            | Definition, steps                             |
|     | Cynthia J. Atman,<br>Robin S. Adams,<br>Monica E.<br>Cardella, Jennifer<br>Turns, Susan<br>Mosborg and<br>Jason Saleem | Engineering Design Processes:<br>A Comparison of Students<br>and Expert Practitioners | Steps                                         |



| No  | Author                                          | Title                                                                   | Knowledge                                             |
|-----|-------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------|
| 15. | Ali Gharibi ,<br>Hamid Reza<br>Ovesv Reza Khaki | C                                                                       | The development of wing deflection prediction methods |
| 16. | Qingyang Chen,                                  | Preliminary Design of a Small<br>Unmanned Battery<br>Powered Tailsitter | Thrust, Power and Energy formula                      |
| 17. | Fadhil Bin                                      | Design and Analysis Performance of<br>Fixed Wing VTOL UAV               |                                                       |
|     |                                                 |                                                                         | 26                                                    |



| No  | Author                                                                                | Title                                                                                             | Knowledge                                                 |
|-----|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 18. | Natassya Barlate,<br>Roberto Santos,<br>Kalinka Castelo,<br>JolJoao Vitorior<br>vIlto | Development of a fixed-wing vertical<br>take-off and landing aircraft as an<br>autonomous vehicle | Structure of horizontal and vertical controller autopilot |
| 19. | D. Felix, Cees Bil<br>and Carsten<br>Braun                                            | A Review of Configuration Design for<br>Distributed Propulsion Transitioning<br>VTOL Aircraft     | Single system and Dual system                             |
| 20. | Hasini Viranga,<br>Beeshanga<br>Abewardana ,<br>Ying He, Eryk<br>Dutkiewicz           | Empirical Power Consumption Model<br>for UAVs                                                     | Comparison graph of power<br>consumption                  |





#### www.utm.my innovative • entrepreneurial • global





#### AS332<sup>2</sup>

Intwala , A., & Parikh , Y. (2015). A Review on Vertical Take Off and Landing (VTOL) Vehicles. International Journal of Innovative Research in Advanced Engineering (IJIRAE), 2(2), 186–191.

innovative • entrepreneurial • global





#### Bell XV<sup>21</sup>

McCormick, B. (1967). Aerodynamics of V/STOL flight. Mineola, N.Y.: Dover.





#### James DeLaurier Jet-assisted Ornithopter<sup>20</sup>

Goodheart, B. (2011). Tracing the History of the Ornithopter: Past, Present, and Future. Journal of Aviation/Aerospace Education & Research, 21.





#### Vertol 76<sup>21</sup>

McCormick, B. (1967). Aerodynamics of V/STOL flight. Mineola, N.Y.: Dover.





#### HQ-60 Hybrid Quadrotor UAV<sup>7</sup>

Tielin, M., Chuanguang, Y., Wenbiao, G., Zihan, X., Qinling, Z. and Xiaoou, Z. (2017). Analysis of Technical Characteristics of Fixed-Wing VTOL UAV. In: 2017 IEEE International Conference on Unmanned Systems (ICUS). [online] IEEE. Available at: https://ieeexplore.ieee.org/abstract/document/8278357 [Accessed 1 Oct. 2019].





#### Lockheed XFV<sup>2</sup>

Intwala , A., & Parikh , Y. (2015). A Review on Vertical Take Off and Landing (VTOL) Vehicles. International Journal of Innovative Research in Advanced Engineering (IJIRAE), 2(2), 186–191.