

Faculty of Mechanical Engineering (FKM)

MEASUREMENT OF WINGLET EFFICIENCY OF FLYING WING AIRCRAFT

By:

MOHD NORIZZAT BIN ABDULLAH THANI

SX112706MMF01

Supervised by: DR NAZRI BIN NASIR

OBJECTIVE

- To quantify forces and vibration at the wing with winglet.
- To know the performance of wing with winglet using UTM open wind tunnel testing.
- To analyse the forces produce at different aircraft's wings with pitch angle up to 40°.

SCOPE

- Literature review studied on the shapes, sizes and configuration of the winglets that have been used on flying aircraft.
- The experiment will be executed at wind speed ranging from 10 to 20 m/s.(Until the vibration exist)
- Design from Styrofoam and carrying payloads navigation as well as the existing electronic parts such as flight controller, battery and etc.

WORK PLAN UGP 1

No	Task		Week (UGP1)																
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	Registration	Plan																	
		Actual																	
2	Problem Statement	Plan																	
		Actual																	
3	Objective & Scope	Plan																	
		Actual																	
4	Literature Review	Plan																	
		Actual																	
5	Research & Methodology	Plan																	
		Actual																	
6	Design & Analysis	Plan																	
		Actual																	
7	Presentation	Plan																	
		Actual																	

Legend										
Plan										
Actual										

METHODOLOGY FOR UGP 1

WORK PLAN UGP 2

No	Task			Week (UGP2)														
				2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	Design,Fabricate,Experimental	Plan																
	& Data Collection	Actual																
2		Plan																
	Discussion	Actual																
3	Conclusion/ Recommendation	Plan																
		Actual																
4		Plan																
	Thesis Writing	Actual																

METHODOLOGY FOR UGP 2

CURRENT DESIGN & ANALYSIS (UGP 1)

- Simulations done by SolidWorks.
- Flow type = Laminar and turbulent.
- Velocity Parameters = 15 m/s.
- Thermodynamic parameters = Applied.
- Static Pressure = 101 kPa.
- Material = High Impact Polystrene.

DETAILS ON DESIGN

(AIRFOIL NACA 4412)

10 www.utm.my

PRESSURE DISTRIBUTION LOWER WINGSPAN

PRESSURE DISTRIBUTION UPPER WINGSPAN

COEFFICIENT OF PRESSURE

With Winglet

Without Winglet

0.08

0.10

Without Winglet

With Winglet

Without Winglet

With Winglet

RÉSULTS & DISCUSSION

Without Winglet

- Pressure at lower wingspan is higher than upper.
- Lower wingspan-pressure are increase started at certain length.
- Upper wingspan-higher pressure at root and drop

With Winglet

- Pressure at lower and upper wingspan are almost same.
- High pressure started at root and drop.

EXPERIMENTAL SETUP FOR UGP 2

Testing Section

REFERENCES

- **1.** *Effect of winglets induced tip vortex structure on the performance of subsonic wings,* GauthamNarayan, BibinJohn,2016.
- 2. Design of Parametric Winglets and Wing tip devices A Conceptual Design Approach, Saravanan Rajendran,2012.
- **3.** An Experimental Study on the Effects of Winglets on the Wake and Performance of a ModelWind Turbine, Nicolas Tobin , Ali M. Hamed and Leonardo P. Chamorro, 2015.
- 4. The use of wing tip sails to reduce vortex drag, Aeronautical Journal, J. J. Spillman, 1978.
- 5. The Design and Testing of a Winglet Airfoil for Low-Speed Aircraft, AIAA, M. D. Maughmer, S. S. Tmothy, and S. M. Willits, 2001.
- 6. <u>http://airfoiltools.com/search/index?m%5Bgrp%5D=naca4d&m%5Bsort%5D=1</u>
- **7.** Experimental Investigation of theWake and the Wingtip Vortices of a UAV Model, Pericles Panagiotou, George Ioannidis ID, Ioannis Tzivinikos and Kyros Yakinthos, 2017.
- 8. CFD SIMULATION STUDY OF AIR FLOW AROUND THE AIRFOIL USING THE MAGNUS EFFECT, Patryk SOKOŁOWSKI, Jacek CZARNIGOWSKI, Paweł MAGRYTA.
- 9. Force Measurement on Aircraft Model with and without Winglet using Low Speed Wind Tunnel, N.Muthusamy, S. Vignesh Kumar, Dr. C. Senthilkumar, 2014.
- Numerical simulation of aerodynamic performance for two dimensional wind turbine airfoils, JiYao, Weibin Yuan, jianliang Wang, JianbinXie, Haipeng Zhou, Mingjun Peng, YongSun, 2012.

QUESTIONS & ANSWERS

