Abstract:
Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. Due to nonlinearity of the drag component of Morison’s wave loading and also due to intermittency of wave loading on members in the splash zone, the response is often non-Gaussian; therefore, simple techniques for derivation of the probability distribution of extreme responses are not available. To this end, the conventional Monte Carlo time simulation technique is frequently used for predicting the probability distribution of the extreme responses. However, this technique suffers from excessive sampling variability and hence a large number of simulated response records are required to reduce the sampling variability to acceptable levels. This paper takes advantage of the correlation between extreme responses and their corresponding extreme surface elevations to derive the probability distribution of the extreme responses accurately and efficiently, i.e. without the need for extensive simulations.