Journal Papers

 The list of Journal papers

  1. Mukhiddin I. Muminov and Ali H. M. Murid, Spectral analysis of the two-particle Schrödinger operator on a lattice, AIP Conference Proceedings 1682, 040017 (2015); doi: 10.1063/1.4932490.
  2. Muminov, M. Ѐ, Rasulov, T. K. An eigenvalue multiplicity formula for the Schur complement of a 3 × 3 block operator matrix Siberian Mathematical Journal, Volume 56, Issue 4, 17 July 2015, Pages 699-713
  3. M. I. Muminov, N. M. Aliev, On the spectrum of the three-particle Hamiltonian on a unidimensional lattice, Sibirian Advances in Mathematics, July 2015, Volume 25, Issue 3, pp 155-168
  4. Mukhiddin I. Muminov, H. Neidhardt, and T. Rasulov,. On the spectrum of the lattice spin-boson Hamiltonian for any coupling: 1D case Journal of Mathematical Physics 56, 053507 (2015); doi: 10.1063/1.4921169
  5. M. E. Muminov and A.M. Khurramov, On compact distribution of two-particle Schrödinger operator on a lattice. Russian Mathematics (Iz. VUZ), 2015, Vol. 59, No. 6, pp. 18–22
  6. Mukhiddin I. Muminov, Tulkin H. Rasulov, Universality of the discrete spectrum asymptotics of the threeparticle Schr¨odinger operator on a lattice. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6 (2), P. 280–293
  7. Mukhiddin I. Muminov, Tulkin H. Rasulov, On the eigenvalues of a 2×2 block operator matrix. Opuscula Math. 35, no. 3 (2015), 371-395.
  8. M. I. Muminov, N. M. Aliev, “Discrete spectrum of a noncompact perturbation of a three-particle Schrödinger operator on a lattice”, Teoret. Mat. Fiz., 182:3 (2015),Pp.381–396
  9. M. I. Muminov, A. M. Khurramov. Spectral Properties Of Two Particle Hamiltonian On One-Dimensional Lattice. Ufa Mathematical Journal. Volume 6. No 4 (2014). Pp. 102-110.
  10. M. I. Muminov, T. H. Rasulov. On the number of eigenvalues of the family of operator matrices, Nanosystems: Physics, Chemistry, Mathematics, 2014, 5 (5), P. 619–625
  11. M. Aliev, M. I. Muminov. О спектре гамильтониана трех частиц на одномерной решетке. Mat. Tr., 17:2 (2014), 3–22 (Russian)
  12. M. I. Muminov, T. H. Rasulov, “Infiniteness of the number of eigenvalues embedded in the essential spectrum of a 2×2 operator matrix”, Eurasian Math. J., 5:2 (2014), 60–77
  13. M. I. Muminov, A. M. Khurramov. Multiplicity of virtual levels at the lower edge of the continuous spectrum of a two-particle Hamiltonian on a lattice. Theoretical and Mathematical Physics, 180(3): 1040–1050 (2014)
  14. M. I. Muminov, T.H. Rasulov. Embedded Eigenvalues of a Hamiltonian in Bosonic Fock Space. Communications in Mathematical Analysis, Volume 17, Number 1, pp. 1–22 (2014)
  15. M. I. Muminov, A. M. Khurramov. Spectral properties of a two-particle Hamiltonian on a lattice. Theoretical and Mathematical Physics, 2013, 177: 3, pp. 1693–1705.
  16. M. I. Muminov, E. Shermatova. Spectral properties of three-particle model operator on one-dimensional lattice. Uzbek Math. Journal, 2013, no. 4, pp.16-25 (Russian).
  17. M. I. Muminov, A. M. Khurramov. Spectral properties of a two-particle Schrödinger operator on a lattice. Notes of Samarkand State University, 2013, 5, pp. 3-8. (Russian).
  18. M. É. Muminov, N. M. Aliev, Spectrum of the three-particle Schrödinger operator on a one-dimensional lattice. Teoret. Mat. Fiz., 171:3 (2012),  387–403
  19. T. H. Rasulov, M.I. Muminov, The Faddeev Equation and Essential Spectrum of a Hamiltonian in Fock Space, Functional Anal. And Topology, vol. 17, no. 1, 2011, pp. 47-57.
  20. M. E. Muminov, Finiteness conditions for the discrete spectrum of the three-particle Schrödinger operator on a lattice. (Russian) Uzbek. Mat. Zh. 2010, no. 1, 108–117.
  21. M. E. Muminov, U. R. Shodiev Spectral properties of a Hamiltonian of a four-particle system on a lattice. Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 12,  32–43.
  22. M. I. Muminov, U. R. Shodiev, On the essential spectrum of a four-particle Schrödinger operator on a lattice. Mat. Tr., 13:1 (2010),  169–185
  23. M. I. Muminov, Formula for the number of eigenvalues of a three-particle Schrödinger operator on a lattice. Teoret. Mat. Fiz., 164:1 (2010),  46–61
  24. M. I. Muminov, The infiniteness of the number of eigenvalues in the gap in the essential spectrum for the three-particle Schrödinger operator on a lattice. Teoret. Mat. Fiz., 159:2 (2009),  299–317.
  25. M. I. Muminov, Finiteness of the discrete spectrum of the Schrödinger operator of three particles on a lattice. Teoret. Mat. Fiz., 154:2 (2008),  363–371.
  26. M. I. Muminov, T.H. Rasulov, M. Hasanov.  On the spectrum of a model operator in Fock space. Methods Funct. Anal. Topology, vol.15, no. 4,       2009,
  27. M. I. Muminov, On the number of eigenvalues of   generalized Friedrichs model. Uzbek Math. Journal, 2009, №3, с.117-125. (Russian).
  28. M. I. Muminov, Expression for the Number of Eigenvalues of a Friedrichs Model. Mat. Zametki, 82:1 (2007),  75–83.
  29. M. I. Muminov, Positivity of the two-particle Hamiltonian on a lattice. Teoret. Mat. Fiz., 153:3 (2007),  381–387.
  30. M. I. Muminov, A Hunziker–van Winter–Zhislin theorem for a four-particle lattice Schrödinger operator. Teoret. Mat. Fiz., 148:3 (2006),  428–443.
  31. G. R. Yodgorov, M. I. Muminov, Spectrum of a Model Operator in the Perturbation Theory of the Essential Spectrum. Teoret. Mat. Fiz., 144:3 (2005),  544–554
  32. Abdullaev J. I., M. I. Muminov, Spectrum of subhamiltonians of n-particle system on lattice. Uzbek Math. Journal, 2006 N1, pp. 3-9 (Russian).
  33. S. N. Lakaev, M.I. Muminov, Essential and Discrete Spectra of the Three-Particle Schrödinger Operator on a Lattice. Teoret. Mat. Fiz., 135:3 (2003),  478–503
  34. Abdullaev J. I., M. I. Muminov, On the essential spectrum of the four particle Schrödinger operator with contact potentials interactions. DAN Pep.Uzb., 2002, No 3, pp.12-15 (Russian).
  35. Lakaev S. N., M. I. Muminov, On the essential spectrum of non-selfadjoint   generalized Friedrichs model. DAN Pep.Uzb. 1997, №4, pp.8-10 (Russian).
  36. M. I. Muminov, On spectrum of non-selfadjoint   generalized Friedrichs model. Uzbek Math. Journal, 1997, N 1, pp. 48-58 (Russian).
  37. S. N. Lakaev, M.I. Muminov, On spectrum of non-selfadjoint   generalized Friedrichs model. DAN UzSSR, 1995, №7-8, pp.7-11 (Russian).