
Transport Layer 3-1

Chapter 3
Transport Layer

Computer
Networking: A Top
Down Approach

6th edition
Jim Kurose, Keith Ross

Addison-Wesley
March 2012

 All material copyright 1996-2012
 J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer 3-2

Chapter 3: Transport Layer
our goals:
v  understand

principles behind
transport layer
services:
§ multiplexing,

demultiplexing
§  reliable data transfer
§  flow control
§  congestion control

v  learn about Internet
transport layer protocols:
§ UDP: connectionless

transport
§ TCP: connection-oriented

reliable transport
§ TCP congestion control

Transport Layer 3-3

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§  segment structure
§  reliable data transfer
§  flow control
§  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-4

Transport services and protocols
v  provide logical communication

between app processes
running on different hosts

v  transport protocols run in
end systems
§  send side: breaks app

messages into segments,
passes to network layer

§  rcv side: reassembles
segments into messages,
passes to app layer

v  more than one transport
protocol available to apps
§  Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport Layer 3-5

Transport vs. network layer

v  network layer: logical
communication
between hosts

v  transport layer:
logical
communication
between processes
§ relies on, enhances,

network layer
services

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:

v  hosts = houses
v  processes = kids
v  app messages = letters in

envelopes
v  transport protocol = Ann

and Bill who demux to in-
house siblings

v  network-layer protocol =
postal service

household analogy:

Transport Layer 3-6

Internet transport-layer protocols
v  reliable, in-order

delivery (TCP)
§  congestion control
§  flow control
§  connection setup

v  unreliable, unordered
delivery: UDP
§  no-frills extension of

“best-effort” IP
v  services not available:

§  delay guarantees
§  bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

Transport Layer 3-7

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§  segment structure
§  reliable data transfer
§  flow control
§  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-8

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver: handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical

link

network

P2 P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3

Transport Layer 3-9

How demultiplexing works

v  host receives IP datagrams
§  each datagram has source IP

address, destination IP
address

§  each datagram carries one
transport-layer segment

§  each segment has source,
destination port number

v  host uses IP addresses &
port numbers to direct
segment to appropriate
socket

source port # dest port #
32 bits

application
data

(payload)

other header fields

TCP/UDP segment format

Transport Layer 3-10

Connectionless demultiplexing

v  recall: created socket has
host-local port #:

 DatagramSocket mySocket1
= new DatagramSocket(12534);

v  when host receives UDP
segment:
§  checks destination port #

in segment
§  directs UDP segment to

socket with that port #

v  recall: when creating
datagram to send into
UDP socket, must specify
§  destination IP address
§  destination port #

IP datagrams with same
dest. port #, but different
source IP addresses and/
or source port numbers
will be directed to same
socket at dest

Transport Layer 3-11

Connectionless demux: example
DatagramSocket
serverSocket = new
DatagramSocket

 (6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket
mySocket1 = new
DatagramSocket
(5775);

DatagramSocket
mySocket2 = new
DatagramSocket
 (9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

Transport Layer 3-12

Connection-oriented demux

v  TCP socket identified
by 4-tuple:
§  source IP address
§  source port number
§  dest IP address
§  dest port number

v  demux: receiver uses
all four values to direct
segment to appropriate
socket

v  server host may support
many simultaneous TCP
sockets:
§  each socket identified by

its own 4-tuple
v  web servers have

different sockets for
each connecting client
§  non-persistent HTTP will

have different socket for
each request

Transport Layer 3-13

Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

network

P6 P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

three segments, all destined to IP address: B,
 dest port: 80 are demultiplexed to different sockets

server: IP
address B

Transport Layer 3-14

Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

server: IP
address B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server

Transport Layer 3-15

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§  segment structure
§  reliable data transfer
§  flow control
§  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-16

UDP: User Datagram Protocol [RFC 768]
v  “no frills,” “bare bones”

Internet transport
protocol

v  “best effort” service,
UDP segments may be:
§  lost
§  delivered out-of-order

to app
v  connectionless:

§  no handshaking
between UDP sender,
receiver

§  each UDP segment
handled independently
of others

v  UDP use:
§  streaming multimedia

apps (loss tolerant, rate
sensitive)

§ DNS
§  SNMP

v  reliable transfer over
UDP:
§  add reliability at

application layer
§  application-specific error

recovery!

Transport Layer 3-17

UDP: segment header

source port # dest port #

32 bits

application
data

(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

v  no connection
establishment (which can
add delay)

v  simple: no connection
state at sender, receiver

v  small header size
v  no congestion control:

UDP can blast away as
fast as desired

why is there a UDP?

Transport Layer 3-18

UDP checksum

sender:
v  treat segment contents,

including header fields,
as sequence of 16-bit
integers

v  checksum: addition
(one’s complement
sum) of segment
contents

v  sender puts checksum
value into UDP
checksum field

receiver:
v  compute checksum of

received segment
v  check if computed

checksum equals checksum
field value:
§ NO - error detected
§ YES - no error detected.

But maybe errors
nonetheless? More later
….

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Checksum Calculation

1087 13

15

Application Data
(Payload)

Transport Layer 3-19

1087 13

15 FBA4H

Application Data
(Payload)

0000 0100 0101 1011 à SUM

1st compliment:
1111 1011 1010 0100 à CHECKSUM
= FBAH

 0000 0100 0011 1111 à Source Port
+ 0000 0000 0000 1101 à Dest Port
+ 0000 0000 0000 1111 à Length
+ 1111 1011 1010 0100 à Checksum

1111 1111 1111 1111 All 1’s
 No Error

At the sender:

At the receiver:

Transport Layer 3-20

Internet checksum:
When CARRYOUT occurs
example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Transport Layer 3-21

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§  segment structure
§  reliable data transfer
§  flow control
§  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-22

Principles of reliable data transfer
v  important in application, transport, link layers

§  top-10 list of important networking topics!

v  characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-23

v  characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Principles of reliable data transfer
v  important in application, transport, link layers

§  top-10 list of important networking topics!

Transport Layer 3-24

v  characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

v  important in application, transport, link layers
§  top-10 list of important networking topics!

Principles of reliable data transfer

Transport Layer 3-25

v  Incrementally develop the sender and receiver
sides with reliable data transfer protocol (rdt)

v  rtd protocol version :

Ø rdt1.0: reliable transfer over a reliable channel
v underlying channel perfectly reliable

§  no bit errors
§  no loss of packets

v  no need to provide feedback to sender
v  no need for the rcv to ask sender to slow down sending rate

Ø rdt2.0: channel with bit errors
Ø rdt3.0: channels with errors and loss

Reliable data transfer (rdt):

Transport Layer 3-26

v  underlying channel may flip bits in packet
§  checksum to detect bit errors

v  the question: how to recover from errors:
§  acknowledgements (ACKs): receiver explicitly tells sender

that pkt received OK
§  negative acknowledgements (NAKs): receiver explicitly tells

sender that pkt had errors
§  sender retransmits pkt on receipt of NAK

v  new mechanisms in rdt2.0 (beyond rdt1.0):
§  error detection
§  feedback: control msgs (ACK,NAK) from receiver to

sender

rdt2.0: channel with bit errors

Transport Layer 3-27

rdt2.0 has a fatal flaw!

what happens if ACK/
NAK corrupted?

v  sender doesn’t know
what happened at
receiver!

v  can’t just retransmit:
possible duplicate

handling duplicates:
v  sender retransmits

current pkt if ACK/NAK
corrupted

v  sender adds sequence
number to each pkt

v  receiver discards (doesn’t
deliver up) duplicate pkt

stop and wait
sender sends one packet,
then waits for receiver
response

Transport Layer 3-28

rdt3.0: channels with errors and loss

new assumption:
underlying channel can
also lose packets
(data, ACKs)
§  checksum, seq. #,

ACKs, retransmissions
will be of help … but
not enough

approach: sender waits
“reasonable” amount of
time for ACK

v  retransmits if no ACK
received in this time

v  if pkt (or ACK) just delayed
(not lost):
§  retransmission will be

duplicate, but seq. #’s
already handles this

§  receiver must specify seq
of pkt being ACKed

v  requires countdown timer

Transport Layer 3-29

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

rdt3.0 in action

Transport Layer 3-30

rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0
rcv pkt0

pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1

send pkt0
rcv ack1

pkt0

ack1

ack0

send pkt0
rcv ack1 pkt0

rcv pkt0
send ack0 ack0

rcv pkt0

send ack0
(detect duplicate)

Transport Layer 3-31

Performance of rdt3.0
v  rdt3.0 is correct, but performance stinks
v  e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

§ U sender: utilization – fraction of time sender busy sending

U
sender =

.008
30.008

= 0.00027
L / R

RTT + L / R
=

§ Therefore, the throughput is 8Kb/30.008ms=267Kb/sec.
If 1Kb pkt is transferred in every 30.008 msec, the
throughput is 33Kb/sec over 1 Gbps link.

v  network protocol limits use of physical resources!

Dtrans = L
R

 8000 bits
109 bits/sec = = 8 microsecs

Transport Layer 3-32

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

.008
30.008

= 0.00027
L / R

RTT + L / R
=

Transport Layer 3-33

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
§  range of sequence numbers must be increased
§  buffering at sender and/or receiver

v  two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-34

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
 utilization by a factor of 3!

U
sender =

.0024
30.008

= 0.00081
3L / R

RTT + L / R
=

Transport Layer 3-35

Pipelined protocols: overview

Go-back-N:
v  sender can have up to

N unack’ed packets in
pipeline

v  receiver only sends
cumulative ack
§  doesn’t ack packet if

there’s a gap
v  sender has timer for

oldest unacked packet
§ when timer expires,

retransmit all unacked
packets

Selective Repeat:
v  sender can have up to N

unack’ed packets in
pipeline

v  rcvr sends individual ack
for each packet

v  sender maintains timer

for each unacked packet
§ when timer expires,

retransmit only that
unacked packet

Transport Layer 3-36

Go-Back-N: sender
v  “window” size N and each k-bit has seq # in pkt header
v  “window” of up to N, consecutive unack’ed pkts allowed

v  ACK(n): ACKs all pkts up to, including seq # n - “cumulative
ACK”
§ may receive duplicate ACKs (see receiver)

v  timer for oldest in-flight pkt
v  timeout(n): retransmit packet n and all higher seq # pkts in

window

Transport Layer 3-37

GBN in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
 (re)send ack1 rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

X loss

receive pkt4, discard,
 (re)send ack1
receive pkt5, discard,
 (re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

Transport Layer 3-38

Selective repeat
v  receiver individually acknowledges all correctly

received pkts
§  buffers pkts, as needed, for eventual in-order delivery

to upper layer
v  sender only resends pkts for which ACK not

received
§  sender timer for each unACKed pkt

v  sender window
§  has N consecutive seq #’s
§  limits seq #s of sent, unACKed pkts (up-to “window

size N”

Transport Layer 3-39

Selective repeat: sender, receiver windows

Transport Layer 3-40

Selective repeat (how it works?)

data from above:
v  if next available seq # in

window, send pkt
timeout(n):
v  resend pkt n, restart

timer
ACK(n) in [sendbase,sendbase+N]:
v  mark pkt n as received
v  if n smallest unACKed

pkt, advance window base
to next unACKed seq #

sender
pkt n in [rcvbase, rcvbase+N-1]
v  send ACK(n)
v  out-of-order: buffer
v  in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]
v  ACK(n)
otherwise:
v  ignore

receiver

Transport Layer 3-41

Selective repeat in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
 send ack3 rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

X loss

receive pkt4, buffer,
 send ack4
receive pkt5, buffer,
 send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

record ack4 arrived

record ack5 arrived

Q: what happens when ack2 arrives?

Transport Layer 3-42

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§  segment structure
§  reliable data transfer
§  flow control
§  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-43

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

v  full duplex data:
§  bi-directional data flow in

same connection
§  MSS: maximum segment size
§  E.g. File size=500KB,

MSS=1KB, so TCP construct
500 segments out of data
stream.

v  connection-oriented:
§  handshaking (exchange of

control msgs) inits sender,
receiver state before data
exchange

v  flow controlled:
§  sender will not overwhelm

receiver

v  point-to-point:
§  one sender, one receiver

v  reliable, in-order byte
steam:
§  no “message boundaries”

v  pipelined:
§  TCP congestion and flow

control set window size

Transport Layer 3-44

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

receive window

Urg data pointer checksum
F S R P A U head

len
not

used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-45

TCP seq. numbers, ACKs
sequence numbers (seq #):
§ byte stream “number” of
first byte in segment’s
data

acknowledgements (ACK):
§ seq # of next byte
expected from other side

§ cumulative ACK
Q: how receiver handles
out-of-order segments
§ A: TCP spec doesn’t say,
- up to implementor

•  E.g. use GBN or SR
method

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
 N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from sender

Transport Layer 3-46

TCP seq. numbers, ACKs

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host B Host A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer 3-47

TCP round trip time, timeout
Q: how to set TCP

timeout value?
v  longer than RTT

§  but RTT varies
v  too short: premature

timeout, unnecessary
retransmissions

v  too long: slow reaction
to segment loss

Q: how to estimate RTT?
v  SampleRTT: measured

time from segment
transmission until ACK
receipt
§  ignore retransmissions

v  SampleRTT will vary, want
estimated RTT “smoother”
§  average several recent

measurements, not just
current SampleRTT

Transport Layer 3-48

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§  segment structure
§  reliable data transfer
§  flow control
§  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-49

TCP reliable data transfer (rdt)

v  TCP creates rdt service
on top of IP’s unreliable
service by implementing:
§  pipelined segments
§  cumulative acks
§  single retransmission

timer (refer to timer for
oldest in-flight pkt)

v  retransmissions
triggered by:
§  timeout events
§  duplicate acks

let’s initially consider

simplified TCP sender:
§  ignore duplicate acks
§  ignore flow control,

congestion control

duplicate ACK,
indicating seq. # of next expected byte

(Due to some reason expected seq. # is not
received at receiver)

Transport Layer 3-50

TCP sender events:
data rcvd from app:
v  create segment with

seq #
v  seq # is byte-stream

number of first data
byte in segment

v  start timer if not
already running
§  think of timer as for

oldest unacked
segment

§  expiration interval:
TimeOutInterval

timeout:
v  retransmit segment

that caused timeout
v  restart timer
 ack rcvd:
v  if ack acknowledges

previously unacked
segments
§  update what is known

to be ACKed
§  start timer if there are

still unacked segments

Transport Layer 3-51

TCP: retransmission scenarios

lost ACK scenario

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

X tim
eo

ut

ACK=100

premature timeout

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

“single transmission” “2-pipeline transmission”

timeout:
timeout:

Transport Layer 3-52

TCP: retransmission scenarios

X

cumulative ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

cumulative ACK

ACK(N)= Acknowledged
Seq (N) and below

Transport Layer 3-53

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap
(between seq #)

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments
(retransmit – use oldest timer)

immediately send duplicate ACK,
indicating seq. # of next expected byte
(TCP fast retransmit)

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 3-54

TCP fast retransmit

v  time-out period often
relatively long:
§  long delay before

resending lost packet
v  detect lost segments

via duplicate ACKs.
§  sender often sends

many segments back-
to-back

§  if segment is lost, there
will likely be many
duplicate ACKs.

if sender receives 3
ACKs for same data
(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #
§  likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),

Transport Layer 3-55

X

fast retransmit after sender
receipt of triple duplicate ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut

ACK=100

ACK=100

ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

immediately send duplicate ACK,
indicating seq. # of next expected byte

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Event:

Action:

“triple duplicate ACKs”

Transport Layer 3-56

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§  segment structure
§  reliable data transfer
§  flow control
§  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-57

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so
sender won’t overflow
receiver’s buffer by transmitting
too much, too fast

flow control

Transport Layer 3-58

TCP flow control

buffered data

free buffer space rwnd

RcvBuffer

TCP segment payloads

to application process
v  receiver “advertises” free

buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments
§  RcvBuffer size set via

socket options (typical default
is 4096 bytes)

§  many operating systems
autoadjust RcvBuffer

v  sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

v  guarantees receive buffer
will not overflow

receiver-side buffering

rwnd = received window
free buffer space

RcvBuffer = received buffer data

Transport Layer 3-59

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§  segment structure
§  reliable data transfer
§  flow control
§  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-60

Connection Management (TCP)
before exchanging data, sender/receiver “handshake”:
v  agree to establish connection (each knowing the other willing to establish

connection)
v  agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
 server-to-client
rcvBuffer size
 at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
 server-to-client
rcvBuffer size
 at server,client

application

network

Socket clientSocket =
 newSocket("hostname","port

number");

Socket connectionSocket =
welcomeSocket.accept();

Connection set up

Transport Layer 3-61

Q: will 2-way handshake
always work in
network?

v  variable delays
v  retransmitted messages

(e.g. req_conn(x)) due to
message loss

v  message reordering
v  can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
 req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Agreeing to establish a connection

Transport Layer 3-62

Agreeing to establish a connection
2-way handshake failure scenarios:

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminates

server
forgets x

connection
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x
 req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client
terminates

ESTAB

choose x
 req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

“client is dead” “client is dead”

Transport Layer 3-63

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

SYNbit=0

Transport Layer 3-64

TCP: closing a connection

v  client, server each close their side of connection
§  send TCP segment with FIN bit = 1

v  respond to received FIN with ACK
§ on receiving FIN, ACK can be combined with own FIN

v  simultaneous FIN exchanges can be handled

Transport Layer 3-65

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
 wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

 timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=x can no longer
send but can
 receive data

clientSocket.close()

client state

server state

ESTAB ESTAB

Transport Layer 3-66

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§  segment structure
§  reliable data transfer
§  flow control
§  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-67

congestion:
v  informally: “too many sources sending too much

data too fast for network to handle”
v  different from flow control!
v  manifestations:

§ lost packets (buffer overflow at routers)
§ long delays (queueing in router buffers)

v  a top-10 problem!

Principles of congestion control

Transport Layer 3-68

Approaches towards congestion control

two broad approaches towards congestion control:

end-end congestion
control:

v  no explicit feedback
from network

v  congestion inferred
from end-system
observed loss, delay
(e.g. from timeout,
duplicate ACK)

v  approach taken by
TCP

network-assisted
congestion control:

v  routers provide
feedback to end systems
§ single bit indicating

congestion (as
implemented by SNA,
DECbit, TCP/IP ECN,
ATM)

§ explicit rate for
sender to send at

Transport Layer 3-69

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§  segment structure
§  reliable data transfer
§  flow control
§  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-70

TCP congestion control: additive increase
multiplicative decrease (AIMD)

v  approach: sender increases transmission rate (window size),
probing for usable bandwidth, until loss occurs
§  additive increase: increase cwnd (congestion
window) by 1 MSS (Maximum Segment Size) every RTT
until loss detected

§ multiplicative decrease: cut cwnd in half after loss
c
w
n
d
:

 T
C

P
se

nd
er

co

ng
es

tio
n

w
in

do
w

 s
iz

e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

Transport Layer 3-71

TCP Congestion Control: details

v  sender limits transmission:

v  cwnd is dynamic, function
of perceived (recognized)
network congestion

TCP sending rate:
v  roughly: send cwnd

bytes, wait RTT for
ACKS, then send
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-
 LastByteAcked

< cwnd

sender sequence number space

rate ~ ~
cwnd
RTT

bytes/sec

Transport Layer 3-72

TCP Slow Start

v  when connection begins,
increase rate
exponentially until first
loss event:
§  initially cwnd = 1 MSS
§  double cwnd every RTT
§  done by incrementing
cwnd for every ACK
received

v  summary: initial rate is
slow but ramps up
exponentially fast

Host A

one segment

R
TT

Host B

time

two segments

four segments

Transport Layer 3-73

Q: when should the
exponential increase
switch to linear?

A: when cwnd gets to 1/2 of
its value before timeout.
(Congestion Avoidance)

Implementation:
v  variable ssthresh (slow-

start threshold)
v  on loss event:

v ssthresh is set to 1/2 of
cwnd just before loss event

v Value of cwnd is set to 1 MSS
(slow start)

TCP: Slow Start & Congestion Avoidance (CA)
(Loss because of Timeout)

Phase TR CW SS ssth

Slow
start

1 1 1 8

2 2 3 8

3 4 7 8

4 8 15 8

CA

5 9 24 8

6 10 34 8

7 11 44 8

8 12 56 12/2 = 6

Transport Layer 3-74

Switching from slow start to CA

TR=Transmission round
CW=Congestion Window

SS=Segment Send
ssthreshold=slow start threshold

TR 1 to 4
-  Slow Start, Exponential growth, ssth=8

TR 4 = ssth is detected and Congestion
Avoidance (CA) starts

TR 5 to 8
- Operate at CA, Linear growth

TR CW SS ssth

9 1 57 6

10 2 59

11 4 63

12 6 (8) 69 6

13 7 78

14 8 86

15 9 95

Transport Layer 3-75

LOSS because of TIMEOUT

TR=Transmission round
CW=Congestion Window

SS=Segment Send
ssthreshold=slow start threshold

After TR 8
-  Timeout is detected

TR 9 to 12 (refer table)
-  CW=1, and ssth=1/2*CW(current)=6
-  Start Slow, Exponential Growth and
ssthreshold = 6

TR 12 to 15
- Operate at CA, Linear Growth

Transport Layer 3-76

Earlier version of TCP
(TCP Tahoe)
entered Slow start

Newer version of

TCP (TCP Renoe)
incorporated fast
recovery

 Implementation:
v  on loss event, ssthresh is

set to 1/2 of cwnd just before
loss event

v  cwnd is cut in half window then
grows linearly

TCP: Fast Recovery
(Loss because of 3 Duplicate ACK)

3 Duplicate ACK

Slow Start

Fast Recovery

TR CW SS ssth

9 6 62 6

10 7 69

11 8 77

12 9 86

13 10 96

14 11 107

15 12 119

Transport Layer 3-77

LOSS because of 3 DUPLICATE ACK
(TCP RENO)

TR=Transmission round
CW=Congestion Window

SS=Segment Send
ssthreshold=slow start threshold

After TR 8 3 DUP ACK is detected

TR 9
- CW=1/2*CW(current)=12/2=6

TR 9,10 to 15
-  Enters Fast Recovery
-  Operate at Congestion Avoidance (CA)
-  Linear growth

3DUP ACK

v  loss indicated by
timeout: (Slow Start)

§  cwnd set to 1 MSS;
§  window then grows
exponentially (as in slow start)
to threshold, then grows
linearly

v  loss indicated by 3
duplicate ACKs (Fast
Recovery)

§  dup ACKs indicate network
capable of delivering some
segments
§  cwnd is cut in half window
then grows linearly

TCP: detecting, reacting to loss

v  loss indicated by
timeout or 3
duplicate ACKs :
(Slow Start)

§  cwnd set to 1
MSS;
§  window then grows
exponentially (as in
slow start) to
threshold, then grows
linearly

TCP RENO TCP Tahoe

Transport Layer 3-79

Chapter 3: summary

v  principles behind
transport layer services:
§ multiplexing,

demultiplexing
§ reliable data transfer
§ flow control
§ congestion control

next:
v  leaving the

network
“edge” (application
, transport layers)

v  into the network
“core”

