Chapter 4 Network Layer

All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

KUROSE ROSS

Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

C

Chapter 4: network layer

chapter goals:

- understand principles behind network layer
 services:
 - network layer service models
 - forwarding versus routing
 - how a router works
 - routing (path selection)
 - broadcast, multicast

instantiation, implementation in the Internet

Chapter 4: outline

4.1 introduction

- 4.2 virtual circuit and datagram networks4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet (intra-AS routing)
- 4.7 broadcast and multicast routing

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer

 network layer protocols in *every* host, router
 router examines header fields in all IP datagrams passing through it

 Frame 90: 760 bytes on wire (6080 bits), 760 bytes captured (6080 bits) on interface 0

 Ethernet II, Src: QuantaCo_02:eb:19 (00:1e:68:02:eb:19), Dst: Cisco_d5:79:ff (00:14:6a:d5:79:ff)

 Internet Protocol Version 4, Src: 10.60.80.213 (10.60.80.213), Dst: 161.139.21.50 (161.139.21.50)

 Transmission Control Protocol, Src Port: nms-dpnss (2503), Dst Port: http (80), Seq: 1, Ack: 1, Len: 706

 Hypertext Transfer Protocol

Two key network-layer functions

- forwarding: move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to dest.
 - routing algorithms

analogy:

- routing: process of planning trip from source to dest
- forwarding: process of getting through single interchange

Interplay between routing and forwarding

3rd function: Connection setup

- 3rd important function in SOME network architectures:
 - Applied in ATM, frame relay, X.25
 - Not applied in Internet
- before datagrams flow, two end hosts and intervening routers establish virtual connection (VC)
 - routers get involved
- network vs transport layer connection service:
 - network: between two hosts (may also involve intervening routers in case of VCs)
 - transport: between two processes

Network service model

Q: What service model for "channel" transporting datagrams from sender to receiver?

example services for individual datagrams:

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

example services for a flow of datagrams:

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Network layer service models:

1	Network	Service	Guarantees ?				Congestion
Architecture		Model	Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss)
	ATM	CBR	constant rate	yes	yes	yes	no congestion
	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	yes	no	no

Asynchronous Transfer Mode (ATM) - Network Architecture CBR: Constant Bit Rate, VBR=Variable Bit Rate, ABR=Available Bit Rate, UBR= Unspecified Bit Rate

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet (intra-AS routing)
- 4.7 broadcast and multicast routing

Connection, connection-less service

- datagram network provides network-layer connectionless service (e..g apply in Internet architecture)
- virtual-circuit (VC) network provides network-layer connection service (e.g. apply in ATM architecture)
- analogous to TCP/UDP connection-oriented / connectionless transport-layer services, but:
 - service: host-to-host
 - no choice: network provides one or the other
 - implementation: in network core

Virtual circuits (VC connection)

"source-to-dest path behaves much like telephone circuit"

- performance-wise
- network actions along source-to-dest path
- call setup, teardown for each call before data can flow
 - Have 3 connection phase:
 - VC setup(i), Data transfer(ii), VC teardown (iii)
- each packet carries VC identifier (not destination host address)
- every router on source-dest path maintains "state" for each passing connection
- link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)

Datagram networks (connectionless)

- no call setup at network layer
- routers: no state about end-to-end connections
 - no network-level concept of "connection"
- * packets forwarded using destination host address

Datagram forwarding table

Datagram forwarding table

Destination	Link Interface			
11001000 through	00010111	00010000	0000000	0
U	00010111	00010111	11111111	U
11001000 through	00010111	00011000	00000000	1
J	00010111	00011000	11111111	•
11001000 through	00010111	00011001	0000000	2
U	00010111	00011111	11111111	
otherwise				3

Datagram or VC network: why?

Internet (datagram)

- data exchange among computers
 - "elastic" service, no strict timing req.
- many link types
 - different characteristics
 - uniform service difficult
- "smart" end systems (computers)
 - can adapt, perform control, error recovery
 - simple inside network, complexity at "edge"

ATM (VC)

- evolved from telephony
- human conversation:
 - strict timing, reliability requirements
 - need for guaranteed service
- * "dumb" end systems
 - telephones
 - complexity inside network

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet (intra-AS routing)
- 4.7 broadcast and multicast routing

Router architecture overview

two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP)
- forwarding datagrams from incoming to outgoing link

Switching fabrics

- transfer packet from input buffer to appropriate output buffer
- switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate = N times line rate desirable
- three types of switching fabrics

Switching via memory

first generation routers:

- traditional computers with switching under direct control of CPU
- * packet copied to system' s memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

Switching via a bus

- datagram from input port memory to output port memory via a single shared bus
- bus contention (conflict): switching speed limited by bus bandwidth
 - e.g. 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers

bus

Switching via interconnection network

- overcome bus bandwidth limitations (single shared bus)
- banyan networks, crossbar, other interconnection nets initially developed to connect processors in multiprocessor
- advanced design (to speedup switching)
 - ✓ fragmenting datagram into fixed length cells, switch cells through the fabric. ^K
- Cisco 12000: switches 60 Gbps through the interconnection network

Re-assemble at output port

- buffering required when datagrams arrive from fabric faster than the transmission rate
- scheduling discipline chooses among queued datagrams for transmission

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss (or drop tail) due to output port buffer overflow!
 - QoS will be affected

How much buffering (buffer size) is needed?

RFC 3439 rule of thumb:

- average buffering size = RTT * link capacity C
- e.g., RTT=250 msec ("typical"), C = 10 Gpbs link
 - average buffering size
 - =250 msec * 10 Gpbs =2.5 Gbit buffer
- recent recommendation: with N flows, buffering equal to

$$\frac{\mathbf{RTT} \cdot \mathbf{C}}{\sqrt{\mathbf{N}}}$$

Input port queuing

- fabric slower than input ports combined -> queueing may occur at input queues
 - queueing delay and loss due to input buffer overflow!
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

output port contention (conflict): only one red datagram can be transferred. lower red packet is blocked one packet time later: green packet experiences HOL blocking

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet (intra-AS routing)
- 4.7 broadcast and multicast routing

The Internet network layer

host, router network layer functions:

IP datagram format: IPv4

IP fragmentation, reassembly

- network links have MTU (max transfer size) largest possible link-level frame
 - different link types, different MTUs
- large IP datagram divided ("fragmented") within net
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments

IP fragmentation, reassembly

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet (intra-AS routing)
- 4.7 broadcast and multicast routing

IP addressing: introduction

223 1 1 1

- ✤ IP address: 32-bit identifier for host, router interface
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)
- ✤ One IP addresses associated with each interface

223.1.1.2 223.1.1.4 223.1.2.9 223.1.3.27 223.1.1.3 223.1. 223.1.3.1 223.1.3.2 223.1.1.1 = 11011111 00000001 0000001 00000001 223 Dotted-decimal notation

Network Layer 4-34

223.1.2

IP addressing: introduction

Subnets

*IP address:

- subnet part high order bits
- host part low order bits

*what's a subnet ?

- device interfaces with same subnet part of IP address
- can physically reach each other without intervening (or overriding) router

network consisting of 3 subnets
Subnets

recipe

- \diamond to determine the subnets, detach each interface from its host or router, creating islands of isolated networks
- each isolated network is called a subnet

223.1.3.0/24

subnet

part

The subnet mask

- A computer (or a router, which is simply a specialized computer) must be able to identify whether a computer with a given IP address is on its subnet or not.
- The subnet mask is:
 - used to separate the network portion of an IP address from the host portion.
 - a set of 32 bits which the bits in the network portion of the address are set to 1s and the host portion is set to 0s.

example

- This is called a /24 address.
- With a /24 subnet mask (255.255.255.0), IP address 192.168.1.100 would be separated into subnet portion 192.168.1 and host portion 100.
- Convert these subnet mask into decimal values
 - /27, /24, /16, /28, /22

Subnets

- How many subnets? 6
- Addressing scheme
 - Classful addressing
- * Classful addressing
 - Subnet mask /8
 - Class A
 - Subnet mask /16
 - Class B
 - Subnet mask /24
 - Class C
- * Classful addressing
 - An organization needs 2000 hosts and apply class B
 - B allocated 65534 interface: leaving more more than 63000 not used.
 - Not optimized and wasted address

Determine the number of Hosts in a subnet

Marina MA. FSKSM UTM. 2009 41

IP addressing: CIDR (Classless)

CIDR: Classless InterDomain Routing

- more flexible than original system of Internet Protocol (IP) address scheme i.e. classful addressing : A (subnet -8bit), B (subnet -16bit), C (subnet -24 bit))
- can avoid situations where large numbers of IP addresses are unused
- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

IP addresses: how to get one?

- Q: how does network get subnet part of IP addr?A: gets allocated portion of its provider ISP's address space
 - ISP's block <u>11001000 00010111 00010000</u> 00000000 200.23.16.0/20
- e.g. Organization 0 <u>11001000 00010111 0001000</u>0 00000000 200.23.16.0/23 Organization 1 <u>11001000 00010111 0001001</u>0 00000000 200.23.18.0/23
 - **Q**: How does an ISP get block of addresses?
 - A: ICANN: Internet Corporation for Assigned Names and Numbers http://www.icann.org/
 - allocates addresses
 - manages DNS
 - assigns domain names, resolves disputes

IP addresses: how to get one?

Q: How does a *host* get IP address?

- From local organization (e.g. UTM)
- hard-coded by system admin in a file
 - Windows: control-panel->network->configuration->tcp/ ip->properties
 - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"

DHCP: Dynamic Host Configuration Protocol

goal: allow host to dynamically obtain its IP address from network server when it joins network

- can renew its lease on address in use
- allows reuse of addresses (only hold address while connected/"on")
- support for mobile users who want to join network (more shortly)

DHCP overview:

- host broadcasts "DHCP discover" msg [optional]
- DHCP server responds with "DHCP offer" msg [optional]
- host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg

DHCP client-server scenario

223.1.3.0/24

DHCP can return more than just allocated

address of first-hop router for client name and IP address of DNS sever network mask (indicating network) versus host portion of address) Network Layer 4-46

DHCP: example

- connecting laptop needs its IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.1 Ethernet
- Ethernet frame broadcast (dest: FFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

DHCP: example

- DCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- encapsulation of DHCP server, frame forwarded to client, demuxing up to DHCP at client
- client now knows its IP address, name and IP address of DSN server, IP address of its first-hop router

DHCP: Example Wireshark output (home LAN)

request

Message type: Boot Request (1) Hardware type: Ethernet Hardware address length: 6 Hops: 0 Transaction ID: 0x6b3a11b7 Seconds elapsed: 0 Bootp flags: 0x0000 (Unicast) Client IP address: 0.0.0.0 (0.0.0.0) Your (client) IP address: 0.0.0.0 (0.0.0.0) Next server IP address: 0.0.0.0 (0.0.0.0) Relav agent IP address: 0.0.0.0 (0.0.0.0) Client MAC address: Wistron 23:68:8a (00:16:d3:23:68:8a) Server host name not given Boot file name not given Magic cookie: (OK) Option: (t=53,l=1) **DHCP Message Type = DHCP Request** Option: (61) Client identifier Length: 7: Value: 010016D323688A: Hardware type: Ethernet Client MAC address: Wistron 23:68:8a (00:16:d3:23:68:8a) Option: (t=50,l=4) Requested IP Address = 192.168.1.101 Option: (t=12,I=5) Host Name = "nomad" **Option: (55) Parameter Request List** Length: 11; Value: 010F03062C2E2F1F21F92B 1 = Subnet Mask: 15 = Domain Name 3 = Router: 6 = Domain Name Server 44 = NetBIOS over TCP/IP Name Server

.

Message type: Boot Reply (2) Hardware type: Ethernet Hardware address length: 6 Hops: 0 Transaction ID: 0x6b3a11b7 Seconds elapsed: 0 Bootp flags: 0x0000 (Unicast) Client IP address: 192.168.1.101 (192.168.1.101) Your (client) IP address: 0.0.0.0 (0.0.0.0) Next server IP address: 192.168.1.1 (192.168.1.1) Relay agent IP address: 0.0.0.0 (0.0.0.0) Client MAC address: Wistron 23:68:8a (00:16:d3:23:68:8a) Server host name not given Boot file name not given Magic cookie: (OK) **Option:** (t=53,I=1) **DHCP Message Type = DHCP ACK** Option: (t=54,I=4) Server Identifier = 192.168.1.1 Option: (t=1,I=4) Subnet Mask = 255.255.255.0 Option: (t=3,I=4) Router = 192.168.1.1 **Option: (6) Domain Name Server** Length: 12; Value: 445747E2445749F244574092; IP Address: 68.87.71.226: IP Address: 68.87.73.242: IP Address: 68.87.64.146 Option: (t=15.I=20) Domain Name = "hsd1.ma.comcast.net."

DHCP: Example Assignment (home LAN)

	TCP/IP Client Setting
Wireless Network Connection Properties	Internet Protocol (TCP/IP) Properties
General Wireless Networks Advanced	General Alternate Configuration
Connect using: Intel(R) PR0/Wireless 3945ABG Net Configure	You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.
This connection uses the following items:	Obtain an IP address automatically
Client for Microsoft Networks	Use the following IP address:
File and Printer Sharing for Microsoft Networks QoS Packet Scheduler	IP address:
✓ The Internet Protocol (TCP/IP)	Subnet mask:
Install Uninstall Properties	Default gateway:
Description	Obtain DNS server address automatically
Transmission Control Protocol/Internet Protocol. The default wide area network protocol that provides communication	Use the following DNS server addresses:

DHCP Server Assignment

^(လူ) Wireles	s Network Connectio	on Status 🛛 ? 🗙	Network Connect	ion Details	? 🔀
General Support			Network Connection		
Connec	tion status		Property	Value	
2	Address Type:	Assigned by DHCP 192.168.1.4 255.255.255.0	Physical Address IP Address Subnet Mask Default Gateway DHCP Server	00-1C-BF-B8-8B-61 192.168.1.4 255.255.255.0 192.168.1.1 192.168.1.1	
	Default Gateway: Details	192.168.1.1	Lease Obtained Lease Expires DNS Server WINS Server	4/20/2013 7:21:59 PM 4/21/2013 7:21:59 PM 192.168.1.1	

138.76.29.7, different source

port numbers

Network Layer 4-51

source, destination (as usual)

motivation: local network uses just one IP address as far as outside world is concerned:

- range of addresses not needed from ISP: just one IP address for all devices
- can change addresses of devices in local network without notifying outside world
- can change ISP without changing addresses of devices in local network
- devices inside local net not explicitly (precisely) addressable, visible by outside world (a security plus)

implementation: NAT router must:

- outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 ... remote clients/servers will respond using (NAT IP address, new port #) as destination addr
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

Network Layer 4-54

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet (intra-AS routing)
- 4.7 broadcast and multicast routing

ICMP: internet control message protocol

- used by hosts & routers to communicate networklevel information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

Туре	<u>Code</u>	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Traceroute and ICMP

- source sends series of UDP segments to dest
 - first set has TTL = I
 - second set has TTL=2, etc.
 - unlikely port number
- when *n*th set of datagrams arrives to nth router:
 - router discards datagrams
 - and sends source ICMP messages (type 11, code 0)
 - ICMP messages includes name of router & IP address

 when ICMP messages arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" message (type 3, code 3)
- source stops

IPv6: motivation

- initial motivation: 32-bit address space soon to be completely allocated.
- additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- no fragmentation allowed

IPv6 datagram format

priority: identify priority among datagrams in flow flow Label: identify datagrams in same "flow." (concept of "flow" not well defined). next header: identify upper layer protocol for data

ver pri	flow label				
payload	len	next hdr	hop limit		
		address bits)			
destination address (128 bits)					
data					
•	 ✓ 32 bits 				

Other changes from IPv4

- checksum: removed entirely to reduce processing time at each hop
- options: allowed, but outside of header, indicated by "Next Header" field
- ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet (intra-AS routing)
- 4.7 broadcast and multicast routing

Interplay between routing, forwarding

Routing algorithm classification

Q: global or decentralized information?

global:

- all routers have complete topology, link cost info
- "link state" algorithms
 decentralized:
- router knows physicallyconnected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- * "distance vector" algorithms

Q: static or dynamic?

static:

 routes change slowly over time

dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state (LS)
 - distance vector (DV)
 - hierarchical routing
- 4.6 routing in the Internet (intra-AS routing)
- 4.7 broadcast and multicast routing

A Link-State Routing Algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.'s

Example: Dijkstra's algorithm

Routers in nodes u,x,w,v,y and y have been assigned with link cost value as stated in the diagram:

i) Construct table least cost paths from node U to node Z
 ▷ construct shortest path tree by tracing predecessor nodes
 ii) Computes least cost paths from node U to node Z
 iii) Produce forwarding table for node U

notation:

- C(X,Y): link cost from node x to y; = ∞ if not direct neighbors
- D(v): current value of cost of path from source to dest. v
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

Dijkstra's algorithm:

8 Loop

5

6

- 9 find w not in N' such that D(w) is a minimum
- 10 add w to N'

Initialization:

for all nodes v

if v adjacent to u

else $D(v) = \infty$

then D(v) = c(u,v)

 $N' = \{u\}$

- 11 update D(v) for all v adjacent to w and not in N':
- 12 D(v) = min(D(v), D(w) + c(w,v))
- 13 /* new cost to v is either old cost to v or known
- 14 shortest path cost to w plus cost from w to v */
- 15 until all nodes in N'

Aim: Construct table least cost paths from node U to node Z → construct shortest path tree by tracing predecessor nodes

How to determine D(v) in step 1 (N'=uw)?

 $D(v) = \min(\text{link cost for possible route nodes } P(v))$

$$= \min(D(v), D(w) + c(w, v))$$

$$= \min\{(7, u), (3 + 3, w)\} = 6w$$

Least cost paths table from node U to node Z

Step	N'	P(V) D(V)	P(W) D(W)	P(X) D(X)	P(Y) D(Y)	P(Z) D(Z)
0	u	(7,u) <mark>7,u</mark>	(3,u) 3,u	(5,u) <mark>5,u</mark>	Ø	∞
I.	uw	{(7,u),(6,w)} <mark>6,w</mark>	-	{(5,u),(7,w)}	(11,w) 11,w	∞
2	uwx	{(7,u),(6,w)}	-	-	{(2,x),(,w)} ,w	(14,x) 14,x
3	uwxv	-	-	-	{(12,x),(11,w),(10,v}	(14,x) 14,x
4	uwxvy	-	-	-	-	{(12,y),(14,x)}

Aim: ii) Computes least cost paths from node U to node Z iii) Produce forwarding table for node U

Ctor	- NU		D(w)		D(y)	$D(\mathbf{z})$
Step	> N'	p(v)	p(w)	p(x)	р(у)	p(z)
0	u	7,u	(3,u)	5,u	8	8
1	uw	6,w		(5,u) 11,w	8
2	uwx	6,w			11,w	14,x
3	uwxv				10,0	14,x
4	uwxvy					(12,y
5	uwxvyz					

forwarding table for u:

destination	Link (next u)	Least cost	
V	(u <i>,</i> w)	6	
X	(u <i>,</i> x)	5	
У	(u <i>,</i> w)	10	
W	(u,w)	3	
Z	(u,w)	12	

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet (intra-AS routing)
- 4.7 broadcast and multicast routing

Distance vector algorithm

key idea:

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

Bellman-Ford equation (dynamic programming)

let $d_x(y) := cost of least-cost path from x to y$

then $d_x(y) = \min_{y \in N} \{c(x,y) + d_y(y)\}$ for each node $y \in N$

min taken over all neighbors v of x cost from neighbor v to dest y cost to neighbor v

* under minor, natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_x(y)$

Bellman-Ford example

clearly, $d_v(z) = 5$, $d_x(z) = 3$, $d_w(z) = 3$ B-F equation says: $d_u(z) = \min \{ c(u,v) + d_v(z), c(u,x) + d_x(z), c(u,w) + d_x(z), c(u,w) + d_w(z) \}$ $= \min \{ 2 + 5, 1 + 3, 5 + 3 \} = 4$

node achieving minimum is next hop in shortest path, used in forwarding table

Distance vector algorithm

iterative, asynchronous:

- each local iteration caused by:
- local link cost change
- DV update message from neighbor

distributed:

- each node notifies
 neighbors *only* when its
 DV changes
 - neighbors then notify their neighbors if necessary

each node:

Iterative & Asynchronous estimation
 Distributed Updated Information

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet (Intra-AS routing)
- 4.7 broadcast and multicast routing

Hierarchical routing

our routing study thus far - idealization

- * all routers identical
- network "flat"
- ... not true in practice

scale: with 600 million destinations:

- can't store all dest's in routing tables!
- routing table exchange would swamp (flood) links!

administrative autonomy

- internet = network of networks
- each network admin may want to control routing in its own network

Hierarchical routing

- aggregate routers into regions, "autonomous systems (AS)"
- routers in same AS run same routing protocol
 - "intra-AS" routing protocol
 - routers in different AS can run different intra-AS routing protocol

gateway router:

- * at "edge" of its own AS
- has link to router in another AS

How to Update Forwarding Table Content in "autonomous system (AS)" router

Interconnected ASes

- forwarding table configured by both intraand inter-AS routing algorithm
 - intra-AS sets entries for internal dests
 - inter-AS & intra-AS sets entries for external dests

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP (Internet Control Message Protocol)
 - IPv6

4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet (Intra-AS routing)
- 4.7 broadcast and multicast routing

Intra-AS Routing

- * also known as interior gateway protocols (IGP)
- most common intra-AS routing protocols:
 - RIP: Routing Information Protocol (distance vector)
 - OSPF: Open Shortest Path First (link state)
 - IGRP: Interior Gateway Routing Protocol (distance vector with link state property)

Inter-AS routing: BGP

- BGP (Border Gateway Protocol): the de facto inter-domain routing protocol. It is based on "path vector routing" (different from DV and LS)
 - "glue that holds the Internet together"
- BGP provides each AS a means to:
 - eBGP: obtain subnet reachability information from neighboring ASs.
 - iBGP: propagate reachability information to all AS-internal routers.
 - determine "good" routes to other networks based on reachability information and policy.

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet (Intra-AS routing)
- 4.7 broadcast and multicast routing

Broadcast routing

deliver packets from source to all other nodes
source duplication is inefficient:

source duplication: how does source determine recipient addresses?

How does source determine recipient addresses? (Through in-network duplication)

- flooding: when node receives broadcast packet, sends copy to all neighbors
 - problems: cycles & broadcast storm
- controlled flooding: node only broadcasts pkt if it hasn't broadcast same packet before
 - node keeps track of packet ids already broadcasted
 - or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source
- spanning tree:
 - no redundant packets received by any node

Multicast routing: problem statement

goal: find a tree (or trees) connecting routers having local mcast group members legend

- tree: not all paths between routers used
- * shared-tree: same tree used by all group members
- **source-based:** different tree from each sender to rcvrs

goal: find a tree (or trees) connecting routers having local mcast group members

Q: how to connect "islands" of multicast routers in a "sea" of unicast routers?

physical topology

Tunneling

logical topology

- mcast datagram encapsulated inside "normal" (nonmulticast-addressed) datagram
- normal IP datagram sent thru "tunnel" via regular IP unicast to receiving mcast router (recall IPv6 inside IPv4 tunneling)
- receiving mcast router unencapsulates to get mcast datagram

Chapter 4: done!

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format, IPv4 addressing, ICMP, IPv6

4.5 routing algorithms

- link state, distance vector, hierarchical routing
- 4.6 routing in the Internet
 - RIP, OSPF, BGP
- 4.7 broadcast and multicast routing
- understand principles behind network layer services:
 - network layer service models, forwarding versus routing how a router works, routing (path selection), broadcast, multicast
- instantiation, implementation in the Internet