
ADVANCED PIPELINING
FOR INTEGER
OPERATION
Example

Assume that we have…
• a) Pipeline contains 5 stages: IF, ID, EX, M
and W;

• b) Each stage requires one clock cycle;
• c) All memory references hit in cache;

The following program should be
processed
// ADD TWO INTEGER ARRAYS

LW R4 # 400
L1: LW R1, 0 (R4) ; Load first operand

LW R2, 400 (R4) ; Load second operand
ADDI R3, R1, R2 ; Add operands
SW R3, 0 (R4) ; Store result
SUB R4, R4, #4 ; Calculate address of

;next element
BNEZ R4, L1 ; Loop if (R4) != 0

Question 1
• Calculate how many clock cycles will take
execution of this segment on the regular
(nonpipelined) architecture. Show
calculations:

Solution 1
Number of cycles
= [Initial instruction + (Number of instructions
in the loop L1) x number of loop cycles] x
number of clock cycles / instruction (CPI)

Solution 1 continued
Number of cycles
= [1 + (6) x 400/4] x 5 c.c. = 3005 c.c.

Question 2
• Calculate how many clock cycles will take
execution of this segment on the simple
pipeline without forwarding or bypassing
when result of the branch instruction (new
PC content) is available after WB stage.

Solution
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LW R1, 0
(R4)

IF ID Ex M W

LW R2,
400 (R4)

IF ID Ex M W

ADDI R3,
R1,

IF ID * *

SW R3, 0
(R4)

IF * *

SUB R4,
R4, #4

BNEZ R4,
L1

Why stall at cycle 5 and 6
• Two stall cycles (c.c. # 5 and 6) are caused
by the delay of data in the register R2 for
the ADDI

• Same stall cycles in ID stage for the SW
instruction are because ID stage circuits
are busy for ADDI and becoming available
only

Solution
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LW R1, 0
(R4)

IF ID Ex M W

LW R2,
400 (R4)

IF ID Ex M W

ADDI R3,
R1,

IF ID * * Ex M

SW R3, 0
(R4)

IF * * ID Ex

SUB R4,
R4, #4

IF ID

BNEZ R4,
L1

IF

Why SUB start at 8th cc
• SUB can start only on 8-th c.c. because IF
stage is busy with SW instruction

Solution
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LW R1, 0
(R4)

IF ID Ex M W

LW R2,
400 (R4)

IF ID Ex M W

ADDI R3,
R1,

IF ID * * Ex M W

SW R3, 0
(R4)

IF * * ID Ex * M

SUB R4,
R4, #4

IF ID * Ex

BNEZ R4,
L1

IF * ID

Why one c.c. stall
• One c.c. stall in the pipeline happens
because the content of R3 (for SW) is not
ready. However, “Ex” stage can be
executed for SW instruction. This becomes
possible because during the “Ex” stage the
address in memory is calculated (only for
Load or Store instruction

Solution
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LW R1, 0
(R4)

IF ID Ex M W

LW R2,
400 (R4)

IF ID Ex M W

ADDI R3,
R1,

IF ID * * Ex M W

SW R3, 0
(R4)

IF * * ID Ex * M W

SUB R4,
R4, #4

IF ID * Ex M W

BNEZ R4,
L1

IF * ID * * Ex M W

Why two stalls at c.c. 11 and 12
• Two stall cycles (c.c. # 11 and 12) in BNEZ
are coming from the delay of updating the
R4. New content of R4 becomes available
only after 12 c.c. Thus, the content of PC is
updated on W-stage of BNEZ (after15 c.c.).

Solution (number of cycles)
Number of cycles in the loop = 15 c.c.

Number of clock cycles for segment
execution on pipelined processor
= 1 c.c. (IF stage of the initial instruction) +
(Number of clock cycles in the loop L1) x
Number of loop cycles = 1 + 15 x 400/4

= 1501 c.c.

Solution (speed up)
Speedup of the pipelined processor
comparing with non-pipelined processor

= Number of Clock cycles for the segment
execution on non-pipelined processor /
Number of Clock cycles for the segment
execution on simple pipelined processor

= 3005 c.c. / 1501 = 2 times

Credit to
•  http://www.ee.ryerson.ca/~lkirisch/coe818/midfin/

Solutions_COE818_MT.pdf

