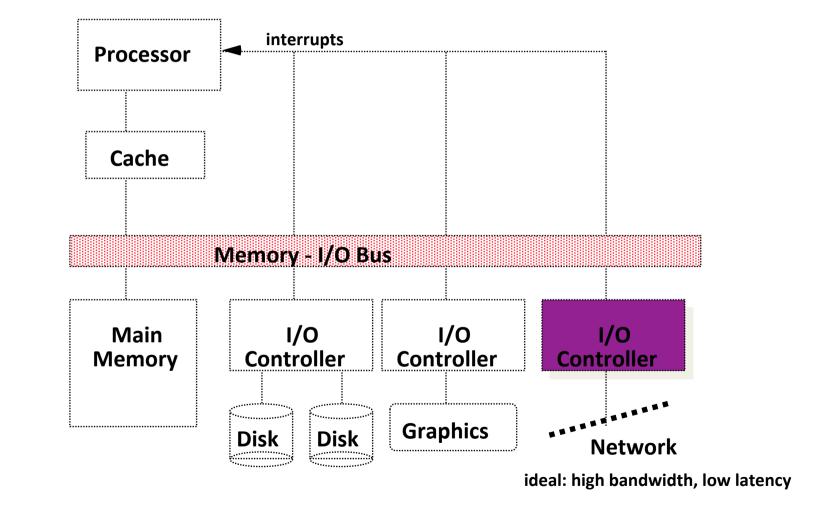


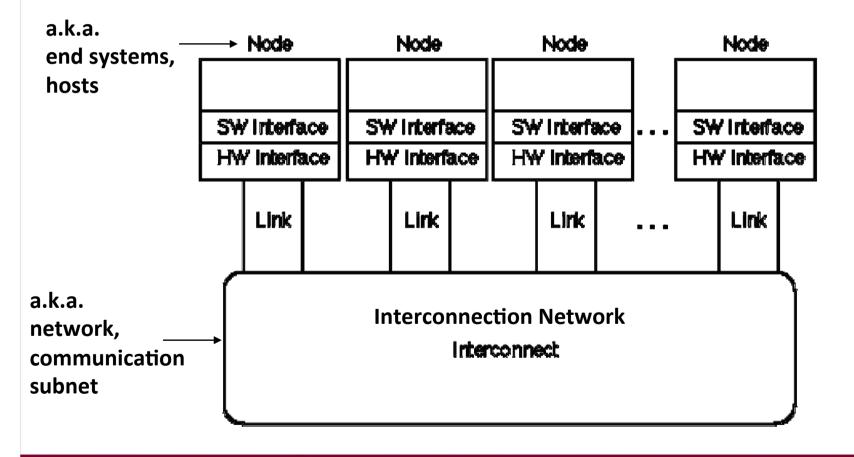
Lecture 10 Network & Interconnect


Assoc. Prof Dr. Norafida Ithnin Advanced Computer System & Architecture MCC 2313

innovative • entrepreneurial • global

www.utm.my

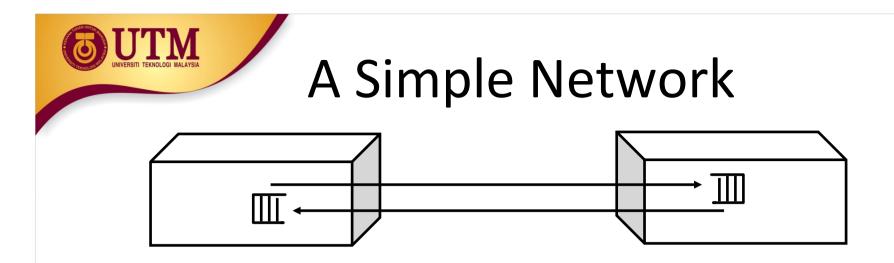
Network Interface



Networks

- Goal: Communication between computers
- Eventual Goal: Treat a collection of computers as one large computer: distributed resource sharing
- An interconnection network is used to allow computers, called nodes, to communicate with one another.
 - Massively parallel processor (MPP) network (e.g., CM5)
 - Thousands of nodes, less than 25 meters apart
 - Local area network (LAN) (e.g., Ethernet)
 - Hundreds of computers, up to a few kilometers apart
 - Wide area network(WAN) (e.g., ATM)
 - Several thousands of computers, several thousand kilometers apart

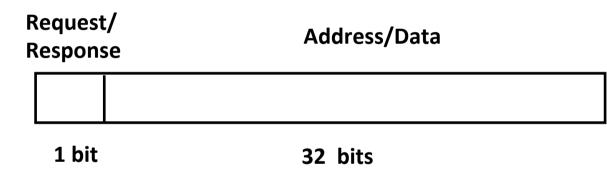
Network Overview


innovative • entrepreneurial • global

www.utm.my

Network Metrics

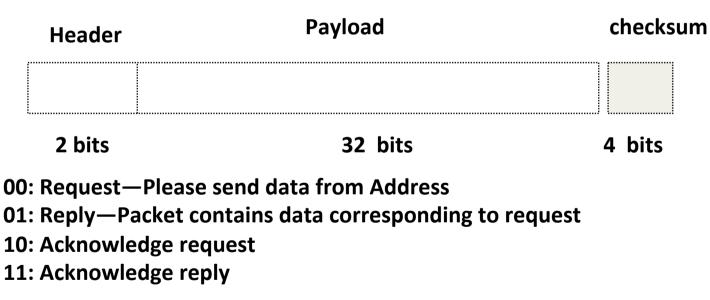
- Facets people talk a lot about:
 - direct vs. indirect
 - topology (e.g., bus, ring, mesh)
 - routing algorithms (how is message passed)
 - wiring (e.g., choice of media copper, coax, fiber)
- What really matters:
 - latency
 - bandwidth
 - cost
 - reliability



- Starting Point: Send bits between 2 computers
- Queue (FIFO) on each end
- Information sent called a "message"
- Can send info both ways ("Full Duplex")
- Rules for communication called a protocol
 - Request : Send address of desired data
 - Response : Send requested data
 - Packet : Name for standard group of bits making up message

A Simple Example

- What is the format of the message?
 - Fixed length? Number bytes?


- **0:** Please send data from Address
- 1: Packet contains data corresponding to request
 - Header/Trailer: information to deliver a message
 - Payload: data in message (1 word above)

Questions About Simple Example

- What if more than 2 computers want to communicate?
 - Need computer address field (destination) in header
- What if packet is garbled in transit?
 - Add error detection field in packet (e.g., ckecksum)
- What if packet is lost?
 - More elaborate protocols to detect loss
- What if multiple processes/machine?
 - Queue per process need to indicate which process
- What if want larger or variable-length packet?
 - Some messages may be thousands of bytes
- Questions such as these lead to more complex protocols and packet formats

A Simple Example Revisted

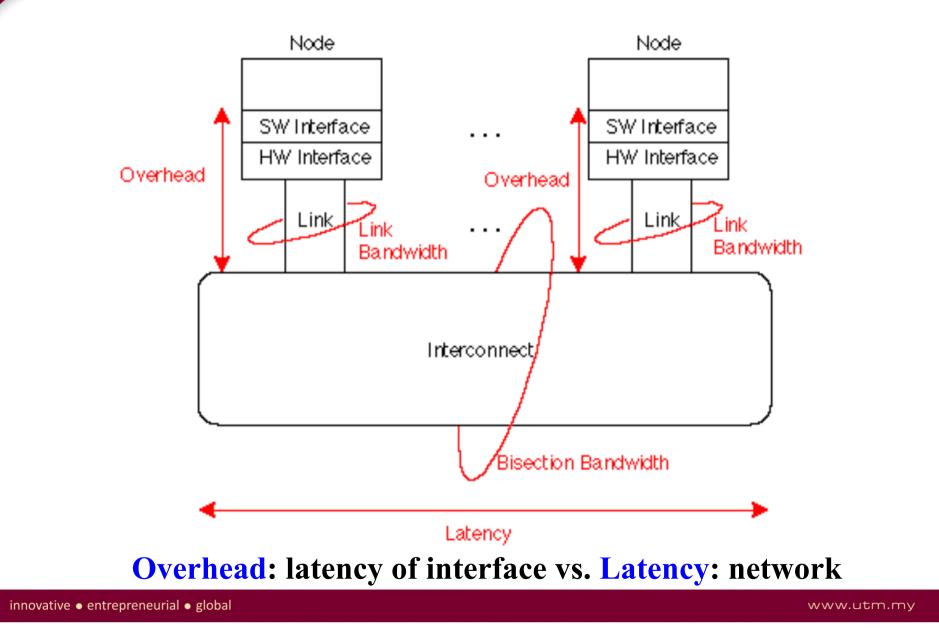
 A more complex packet format might include a longer header and a checksum

Software to Send and Receive

• SW Send steps

- 1: Application copies data to OS buffer
- 2: OS calculates checksum, starts timer
- 3: OS sends data to network interface HW and says start

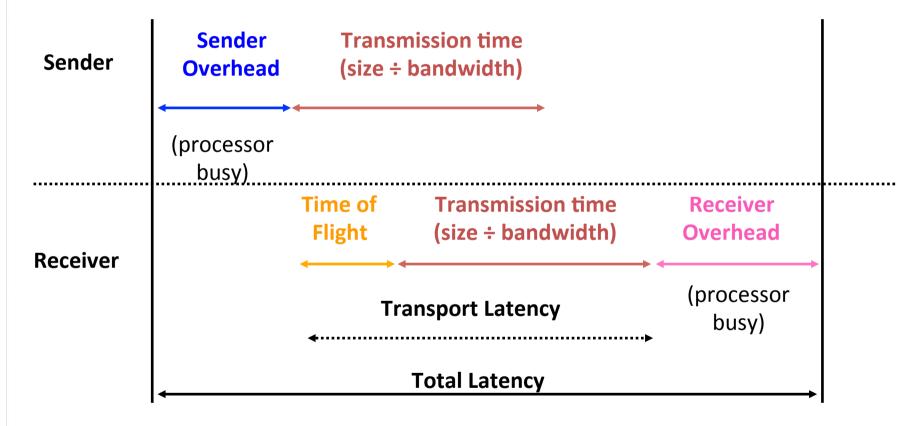
• SW Receive steps


- 3: OS copies data from network interface HW to OS buffer
- 2: OS calculates checksum, if matches send ACK; if not, *deletes message* (sender resends when timer expires)
- 1: If OK, OS copies data to user address space and signals application to continue
- Sequence of steps for SW: protocol
 - Example similar to UDP/IP protocol in UNIX

Network Performance Metrics

- Several metrics are used for network performance
 - Bandwidth : <u>Maximum</u> rate at which the network can propagate information, once the message enters the network (Mbits/sec)
 - Transmission time : Time for message to pass through network transmission time = (message size)/bandwidth
 - Time of flight : Time for first bit of message to arrive at receiver
 - Transport latency : Time message spends in network
 transport latency = transmission time + time of flight
 - Sender overhead : Time for processor to inject a message into the interconnection network
 - Receiver overhead : Time for processor to pull the message from the interconnection network
 - Total latency = sender overhead + trans. latency + receiver overhead

Network Performance Measures


JTM

What is latency in general?

- Latency: How long a message takes to travel from one end of the network to another
- .Speed of light
- propagation delay
- vacuum cable fiber $3 \times 10^8 \text{ m/sec}$ $2.3 \times 10^8 \text{ m/sec}$ $2.0 \times 10^8 \text{ m/sec}$

Universal Performance Metrics

Total Latency = Sender Overhead + Time of Flight + Message Size ÷ BW + Receiver Overhead

Includes header/trailer in BW calculation?

innovative • entrepreneurial • global

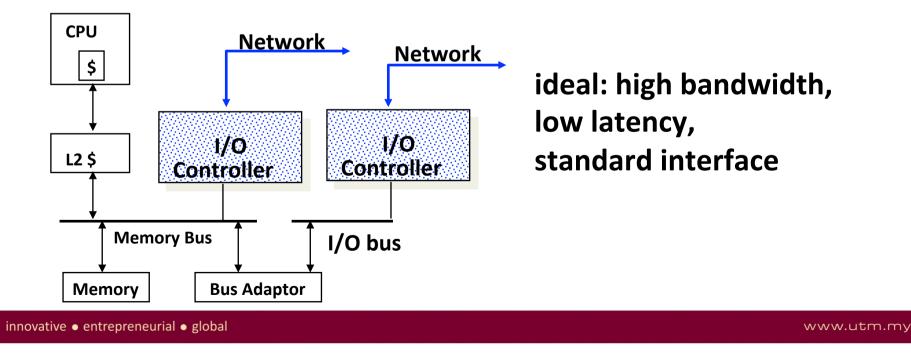
Example Performance Metrics

Interconnect	MPP	LAN	WAN
Example	CM-5	Ethernet	ATM
Link Bandwidth	20 MB/s	10 MB/s	10 MB/s
Transport Latency	5 µsec	15 µsec	50 to 10,000 µs
HW Overhead to/from	0.5/0.5 μs	6/6 µs	6/6 µs
SW Overhead to/from	1.6/12.4 μs	200/241 µs	207/360 µs
		(TCP/IP on LAN/WAN)	

Software overhead dominates in LAN, WAN

Total Latency Example

- 10 Mbit/sec., sending overhead of 230 μsec & receiving overhead of 270 μsec with 50% of speed of light
- A 1000 byte message (including the header), allows 1000 bytes in a single message.
- 2 situations: distance 100 m vs. 1000 km
- Speed of light = 299,792.5 km/sec
- Latency_{0.1km} = 230 + 0.1km / (50% x 299,792.5) + 1000 x 8 / 10 + 270
- Latency_{0.1km} = $230 + 0.67 + 800 + 270 = 1301 \,\mu\text{sec}$
- Latency_{1000km} = 230 + 1000 km / (50% x 299,792.5) + 1000 x 8 / 10 + 270
- Latency_{1000km} = $230 + \frac{6671}{1000} + 800 + 270 = 7971 \,\mu\text{sec}$
- Long time of flight => complex WAN protocol


Simplified Latency Model

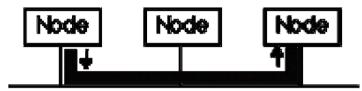
- Total Latency Overhead + Message Size / BW
- Overhead = Sender Overhead + Time of Flight + Receiver Overhead
- Example: show what happens as vary
 - Overhead: 1, 25, 500 μsec
 - BW: 10,100, 1000 Mbit/sec (factors of 10)
 - Message Size: 16 Bytes to 4 MB (factors of 4)
- If overhead 500 µsec,

how big a message > 10 Mb/s?

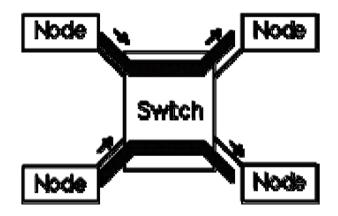
HW Interface Issues

- Where to connect network to computer?
 - Cache consistent to avoid flushes? (=> memory bus)
 - Latency and bandwidth? (=> memory bus)
 - Standard interface card? (=> I/O bus)
 - MPP => memory bus; LAN, WAN => I/O bus

Implementation Issues


Interconnect	MPP	LAN	WAN	
Example	CM-5	Ethernet	ATM	
Maximum length	25 m 500 m; copper: 100 m between nodes optical: 2 km—25 km			
Number data lines	4	1	1	
Clock Rate	40 MHz	10 MHz	155.5 MHz	
Shared vs. Switch	Switch	Shared	Switch	
Maximum number of nodes	2048	254	> 10,000	
Media Material	Copper	Twisted pair copper wire or coaxial	Twisted pair copper wire or optical fiber	
	cable			

TM


Implementation Issues

- Advantages of Serial vs. Parallel lines:
 - No synchronizing signals
 - Higher clock rate and longer distance than parallel lines
 - 60 MHz x 256 bits x 0.5 m vs.
 155 MHz x 1 bit x 100 m
- Switched vs. Shared Media
 - Switched : many messages at same time
 - Shared : one message at a time

Switched Media (CM-5,ATM)

Connecting to the Computer

- Should network interface to memory bus or I/O bus? Why?
 - MPPs plug into memory bus
 - LANs and WANs plug into I/O bus
- How is the receiver notified of a message?
 - Poll network waiting for it to arrive
 - Be interrupted when message arrives
 - Interrupts work better when fewer messages
- General guidelines
 - Avoid invoking the operating system (context switch)

Summary: Interconnections

- Communication between computers
- Packets for sending information: header + payload
- Protocols to cover normal and abnormal events
- Performance issues: overhead, latency, bandwidth
- Implementation issues: length, width, media
- Topologies: many to chose from, but SW overheads make them look the alike

Discussions

innovative • entrepreneurial • global

www.utm.my

Example1

 Assume a network with a bandwidth of 1000 Mbits/second has a sending overhead of 80 microseconds and a receiving overhead of 100 microseconds. Assume two machines. One wants to send a 10000-byte message to the other (including the header), and the message format allows 10000 bytes in a single message.

Example1 cont.

• Let's compare SAN, LAN, and WAN by changing the distance between the machines. Calculate the total latency to send the message from one machine to another in a SAN assuming they are 10 meters apart. Next, perform the same calculation but assume the machines are now 500 meters apart, as in a LAN. Finally, assume they are 1000 kilometers apart, as in a WAN.

Solution

• The speed of light is 299,792.5 kilometers per second in a vacuum, and signals propagate at about 63% to 66% of the speed of light in a conductor. Since this is an estimate, in this chapter we'll round the speed of light to **300,000 km/sec**, and assume we can achieve two-thirds of that in a conductor. Hence, we can estimate time of flight. Let's plug the parameters for the short distance of a SAN into the formula:

Solution

Total Lat. = **Tx overhead** + Time of flight + (Message size/Bandwidth)+ **Rx overhead**

= 80us + [0.01km / (2/3 x 30x105km/s)] + 10000byte/(1000MB/s) + 100us

= 80us + 0.05us + 80us + 100us

innovative • entrepreneurial • global