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In this section we will discuss the deformations that occur when a straight 

beam, made of a homogeneous material, is subjected to bending. The discussion 

will be limited to beams having a cross-sectional area that is symmetrical with 

respect to an axis, and the bending moment is applied about an axis 

perpendicular to this axis of symmetry as shown in figure. 

 

 

 

      

 

 

 

By using a highly deformable material such as rubber, we can physically 

illustrate to a bending moment. Consider, for example, the undeformed bar in 

figure (a) which has a square cross section and is marked with longitudinal and 

transverse grid lines. When a bending moment is applied, it tends to distort 

these lines into the pattern shown in figure (b). When a bending moment is 

applied, it can be seen that the longitudinal lines become curved and the vertical 

transverse lines remain straight and yet undergo a rotation.         

The behavior of any deformable bar subjected to a bending moment causes the 

material within the bottom portion of the bar to stretch and the material within 

the top portion to compress. Consequently, between these two region there must 

be a surface, called the neutral surface, in which longitudinal fibers of the 

material will not undergo a change in length. 
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From these observations we will make the following three 

assumptions regarding the way the stress deforms the 

material: 

 

1- The longitudinal axis x, which lies within the neutral 

surface, figure (a), does not experience any change in 

length. Rather the moment will tend to deform the beam so 

that this line becomes a curve that lies in the x-y plane 

symmetry, figure (b). 

2- All cross sections of the beam remain plane and 

perpendicular to the longitudinal axis during the 

deformation. 

3- Any deformation of the cross section within its own plane 

will be neglected. In particular, the z axis, lying in the plane 

of the cross section and about which the cross section 

rotates, is called the neutral axis. 

 

In order to show how this distortion will strain the material, 

we will isolate a segment of the beam that is located a 

distance x along the beam’s length and has an undeformed 

thickness, x, figure (a) 

6.3 BENDING DEFORMATION OF A STRAIGHT MEMBER 



3 

The element, taken from the beam, is shown in profile view in 

the undeformed positions in the figure. Notice that any line 

segment x, located on the neutral surface, does not change its 

length, whereas any line segment s will contract and become 

s´ after deformation. By definition, the normal strain along 

s is determined from 

 

 

We will now represent this strain in terms of the location y of 

the segment and the radius of curvature ρ of the longitudinal 

axis of the element. After deformation x has a radius of 

curvature ρ. Since θ defines the angle between the cross-

sectional sides of the element, x = s = ρ θ. In the same 

manner, the deformed length of s becomes s´ = (ρ-y) θ. 

Substituting into the above equation, we get  
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This important result indicates that the longitudinal normal strain of any element within the beam depends on its 

location y on the cross section and the radius of curvature of the beam’s longitudinal axis at the point. In other 

words, for any specific cross section, the longitudinal normal strain will vary linearly with y from the neutral axis. 
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A contraction (- ϵ) will occur in fibers located above the neutral axis, whereas 

elongation (+ ϵ) will occur in fibers located below the axis. This variation in strain 

over the cross section is shown in figure. Here the maximum strain occurs at the 

outermost fiber, located a distance c from the neutral axis. Using the previous 

formula; 

 

 

 

 

 

 

 

This normal strain depends only on the assumptions made with regards to the 

deformation. Provided only a moment is applied to the beam, then it is reasonable to 

further assume that this moment causes a normal stress only in the longitudinal or x 

axis. All the other components of normal and shear stress are zero. It is uniaxial state 

of stress that causes the material to have the longitudinal normal strain component. 

Furthermore by poisson’s ratio, there must be also be associated strain component, 

which deform the plane of the cross sectional area, although here we have neglected 

these deformations. Such deformations will, however, cause the cross-sectional 

dimensions to become smaller below the neutral axis and larger above the neutral 

ais. For example, if the beam has a square cross section, it will actually deform as 

shown in the figure. 
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In this section we will develop an equation that relates the longitudinal stress 

distribution in a beam to the internal resultant bending moment acting on the 

beam’s cross section. To do this we will assume that the material behaves in 

a linear-elastic manner so that Hooke’s law applies. A linear variation of 

normal strain, figure(a), must then be the consequence of a linear variation in 

normal stress, figure(b). Like the strain variation, stress will vary from zero 

at the member’s neutral axis to a maximum value, a distance c farthest from 

the neutral axis. Because of the proportionality of triangles, figure(b), or 

using Hooke’s law, we can write 

 

       

 

 

 

This equation represents the stress distribution over the cross-sectional area. 

The sign convention established here is significant. For positive M, which 

acts in the +z direction, positive values of  y give negative values of , that 

is, a compressive stress since it acts in the negative x direction. Similarly, 

negative y values will give positive or tensile values for . If a volume 

element of material is selected at a specific point on the cross section, only 

these tensile or compressive normal stresses will act on it. 
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We can locate the position of the neutral axis on the cross section by 

satisfying the condition that the resultant force produced by the stress 

distribution over the cross-sectional area must be equal to zero. Noting that 

the force dF =  dA acts on the arbitrary element dA in figure(c), we 

require 

 

 

 

 

 

 

 

 

 

        

In other words, the first moment of the member’s cross-sectional area about 

the neutral axis must be zero. This condition can only be satisfied if the 

neutral axis is also the horizontal centroidal axis for the cross section. 

Consequently, once the centroid for the member’s cross-sectional area is 

determined, the location of the neutral axis is known. 
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We can determine the stress in the beam from the requirement that the 

resultant internal moment M must be equal to the moment produced by the 

stress distribution about the neutral axis. The moment of dF in figure(c) 

about the neutral axis dM = y dF. This moment is positive since, by the right-

hand rule, the thumb is directed along the positive z axis when the fingers are 

curled with the sence of rotation caused by dM. Since dF =  dA, we have 

for the entire cross-section, 

 

 

 

 

 

 

 

 

Here the integral represents the moment of inertia of the beam’s cross-

sectional area, computed about the neutral axis. We sybolize its value as I. 

Hence the equation can be solved for stress and written in general form as 
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The normal stress at the intermediate y can be determined from an equation 

similar to equation above. 

 

 

 

 

Either of the above two equations is often referred as flexure formula. It is 

used to determine the normal stress in a straight member, having a cross 

section that is symmetrical with respect to an axis, and the moment is applied 

perpendicular to this axis. 
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Example 6.1 (Hibbeler) 

The simply supported beam in the figure(a) has the cross-sectional area shown 

in figure(b). Determine the absolute maximum bending stress in the beam and 

draw the stress distribution over the cross section at this location. 



The beam shown in figure(a) has a cross sectional area in the shape of a channel, 

figure(b). Determine the maximum bending stress that occurs in the beam at section  a-a. 
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Example 6.2 (Hibbeler) 
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The member having a rectangular cross section, figure(a), is designed to resist a moment 

of 40 N.m. In order to increase its strength and rigidity, it is proposed that two small ribs 

be added at its bottom, figure(b). Determine the maximum normal stress in the member 

for both cases. 

Example 6.3 (Hibbeler)  
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A beam is constructed from four pieces of wood, glues together as shown. If the 

moment acting on the cross section is M = 450 N.m, determine the resultant force the 

bending stress produces on the top board A and on the side board B. 

Example 6.4 (Hibbeler) 


