Engineering Economics

Interest Rate and Equivalence

Outcome of Today's Lecture

- After completing this lecture...

- The students should be able to:
- Understand interest and rate of return
* Define and provide examples of the time values of money
- Distinguish between simple and compound interest, and use compound interest in engineering economic analysis

Terminology and Symbols

- $\mathrm{P}=$ value or amount of money at present, Also referred as present worth (PW), present value (PV), net present value, discounted cash flow and Capital Cost
- $\mathrm{F}=$ Value or amount of money at future time. Also F is called future worth (FW) and future value (FV)
- $A=$ Series of consecutives, equal, end of period amounts of money (Receipts/disbursement)
- $n=$ Number of interest period; years, months or days
- $i=$ interest rate per time period; percent per year
- $\mathrm{t}=$ time, stated in periods; years, months or days

Interest

- I.Simple interest
- Simple interest is computed only on original sum (principal), not on prior interest earned and left in the account.
- A bank account, for example, may have its simple interest every year: in this case, an account with $\$ 1000$ initial principal and 20% interest per year would have a balance of \$I200 at the end of the first year, \$1400 at the end of the second year, and so on.
- 2. Compound Interest
- Compound interest arises when interest is added to the principal of a deposit or loan, so that, from that moment on, the interest that has been added also earns interest. This addition of interest to the principal is called compounding.
- A bank account, for example, may have its interest compounded every year: in this case, an account with \$1000 initial principal and 20\% interest per year would have a balance of $\$ 1200$ at the end of the first year, $\$ 1440$ at the end of the second year, and so on.

Simple Interest Rate

- Interest is paid when a person/organisation borrowed money and repays a larger amount over time

$$
\begin{gathered}
\text { Interest =Amount to be returned }- \text { Principle (original amount) } \\
\qquad \text { Interest }=\text { F-P }
\end{gathered}
$$

- interest rate on borrowed fund is determined using the original amount (called Principal) as

$$
\text { Interest Rate }(\%)=\frac{\text { interest incurred per unit time }}{\text { Prinicipal }} \times 100
$$

- Time unit of interest paid is called interest period.

Simple Interest Rate

- If the interest rate, i , is given then;

interest $=\mathrm{P} \times \mathrm{i} \times \mathrm{n}$

- And at the end of n years the total amount of money due, F, would equal the amount of the loan, P, plus the total interest,P.i.n, as given by;

$$
F=P+P(i)(n)
$$

Simple Interest Rate

- Examplel.3: An employee at Laserkinetics.com borrows \$10,000 on May I and must repay a total of $\$ 10,700$ exactly I year later. Determine the interest amount and the interest rate paid.
- Solution:
- Amount to be paid= $\$ 10,700$
- Original amount=\$10,000
- Interest=Amount to be paid-Original amount=10700-10000=\$700

$$
\begin{aligned}
& \text { Interest Rate }(\%)=\frac{\text { interest incurred per unit time }}{\text { Prinicipal }} \times 100 \\
& \text { Interest Rate }(\%)=\frac{700}{10000} \times 100=7 \% / \text { year }
\end{aligned}
$$

Simple Interest Rate

- Example I.4: Stereographic, Inc., plans to borrow $\$ 20000$ from a bank for I year at 9% interest for new recording equipment.
- Compute the interest and total amount due after I year.
- Solution:
- Original (Principal) amount $=\$ 20,000$
- Interest rate=9\% annual
$9=\frac{\text { interest incurred per year }}{20000} \times 100$
Interest $=\$ 1800$

$$
\begin{aligned}
\text { interest }= & 20000 \times 0.09 \times 1 \\
& =1800
\end{aligned}
$$

- Total due amount after a year $=20000+1800=\$ 21800$

Simple Interest Rate

- Example I.5: Calculate the amount deposited I year ago to have $\$ 1000$ now at an interest rate of 5% per year.
- Calculate the amount of interest earned during this period.
- Solution:

Interest=amount owned now-original deposit
Interest + original deposit=amount owned now
Interest rate (original deposit) no. of interest period + original deposit=amount owned now
(Interest rate \times no. of interest period +1) original deposit $=1000$
Original deposit=1000/(1.05)=\$952.38

$$
\begin{array}{|l|}
I=F-P \\
I+P=F \\
P i n+P=F \\
F=P(\text { in }+1) \\
1000=P(0.05+1) \\
P=952.38 \\
\hline
\end{array}
$$

, Thus

- Interest $=1000-952.38=\$ 47.62$

Example: 3.3 (Simple interest)

- You have agreed to loan a friend $\$ 5000$ for 5 years at a simple interest rate of 8% per year. How much interest will you receive from the loan. How much will your friend pay you at the end of 5 years.
- Solution

Sr.\#	Principal at which interest is computed	Interest owed at end of year n	Due at the end of year \boldsymbol{n}
I	5000	400	5400
2	5000	400	5800
3	5000	400	6200
4	5000	400	6600
5	5000	400	7000

> | OR | Total interest $=\mathrm{P} \times \mathrm{i} \times \mathrm{n}$ |
| :--- | :--- |
| Total interest $=5000 \times \frac{8}{100} \times 5=2000$ | |
| Total amount due at end of loan $=5000+2000=7000$ | |

Compound Interest Rate

- Compound interest arises when interest is added to the principal of a deposit or loan, so that, from that moment on, the interest that has been added also earns interest.
- Using notation, P, F, n, \& I, compound interest calculations assuming single payment at the end of loan period are given by

Year
 1
 2
 3
 n

Amount at Beginning of Interest Period	Interest for Period	Amount at End of Interest Period
P	$+i P$	$=P(1+i)$
$P(1+i)$	$+i P(1+i)$	$=P(1+i)^{2}$
$P(1+i)^{2}$	$+i P(1+i)^{2}$	$=P(1+i)^{3}$
$P(1+i)^{n-1}$	$+i P(1+i)^{n-1}$	$=P(1+i)^{n}$

In other words, a present sum P increases in n periods to $P(1+i)^{n}$. We therefore have a relationship between a present sum P and its equivalent future sum, F.

$$
\begin{aligned}
\text { Future sum } & =(\text { Present sum })(1+i)^{n} \\
F & =P(1+i)^{n}
\end{aligned}
$$

Single payment compound interest formula

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- Compound interest arises when interest is added to the principal of a deposit or loan, so that, from that moment on, the interest that has been added also earns interest.
- Future sum, F, using compound interest with single payment at the end of loan period thus becomes as;

$$
\mathrm{F}=P(1+i)^{n}
$$

This is called single payment compound interest formula.

We will learn more about it in next class

Example: 3.4 (Compound interest)

- You have agreed to loan a friend $\$ 5000$ for 5 years at a compound interest rate of 8% per year. How much interest will you receive from the loan. How much will your friend pay you at the end of 5 years.
- Solution

Sr.\#	Principal at which interest is computed	Interest owed at end of year n	Due at the end of year n
I	5000	$5000 \times 0.08=400$	$\mathbf{5 0 0 0 + 4 0 0 = 5 4 0 0}$
2	5400	$5400 \times \mathbf{0 . 0 8 = 4 3 2}$	$\mathbf{5 4 0 0 + 4 3 2 = 5 8 3 2}$
3	5832	$5832 \times 0.08=467$	$5832+467=\mathbf{6 2 9 9}$
4	6299	504	6803
5	6803	544	7347

$$
\text { Total amount due at end of loan }=\$ 7347
$$

Recall: In case of simple interest total amount due at the end of 5 year was $\$ 7000$

Repaying a Debt

- To better understand the mechanics of interest, let say that $€ 5000$ is owed and is to be repaid in years together with 8% annual interest.
- Lets use four specific plans to repay
- Plan I: At end of each year pay €I000 principle plus interest due
- Plan 2: Pay interest at end of each year and principal at end of 5 years
- Plan 3: Pay in five equal end of year payments
- Plan 4: Pay principal and interest in one payment at end of 5 years

Repaying a Debt

Four Plans for Repayment of $€ 5000$ in 5 Years with Interest at 8%

(a) Year	(b) Amount Owed at Beginning of Year	(c) Interest Owed for That Year, $8 \% \times(\mathrm{b})$	(d) Total Owed at End of Year, (b) + (c)	(e) Principal Payment	(f) Total End-of-Year Payment
Plan 1: At end of each year pay € 1000 principal plus interest due.					
1	$€ 5000$	€ 400	€ 5400	$€ 1000$	€1400
					--
		C1200		$€ 5000$	E6200

Repaying a Debt

Four Plans for Repayment of $€ 5000$ in 5 Years with Interest at 8%

(a)	(b)	(c)	(d)	(e)	(f)
	Amount Owed	Interest Owed for	Total Owed at		Total
Year	at Beginning of Year	That Year,	End of Year,	Principal	End-of-Year Payment

Plan 2: Pay interest due at end of each year and principal at end of 5 years.

1	$€ 5000$	$€ 400$	$€ 5400$	$€$	0
2	5000	400	5400	0	$€ 400$
3	5000	400	5400	0	400
4	5000	400	5400	0	400
5	5000	$\boxed{400}$	5400	$\underline{5000}$	400
		$€ 2000$		$\boxed{〔 5000}$	€7000

Repaying a Debt

Four Plans for Repayment of $€ 5000$ in 5 Years with Interest at 8%

(a)	(b) Amount Owed at Beginning of Year	(c) Interest Owed for That Year, $\mathbf{8 \%} \times(\mathrm{b})$	Total End of Year, (b) + (c)	(e) Principal Payment	(f) End-of-Year Payment
Plan 3: Pay in five equal end-of-year payments.					

Repaying a Debt

Four Plans for Repayment of $€ 5000$ in 5 Years with Interest at 8%

(a)	(b)	(c)	(d)	(e)	(f)
	Amount Owed	Interest Owed for	Total Owed at		Total
	at Beginning of	That Year,	End of Year,	Principal	End-of-Year
Year	Year	$8 \% \times(b)$	(b) $+(\mathrm{c})$	Payment	Payment

Plan 4: Pay principal and interest in one payment at end of 5 years.

1	€ 5000	€ 400	€ 6400	e 0	$€ 0$
2	5400	432	5832	0	0
3	5832	467	6299	0	0
4	6299	504	6803	0	0
5	6803	544	7347	5000	7347
		€2347		$€ 5000$	€7347

Economic Equivalence

- Economic equivalence is a combination of interest rate and time value of money to determine the different amounts of money at different points in time that are equal in economic value.

Illustration:

At 6\% interest rate, $\$ 100$ today (present time) is equivalent to $\$ 106$ one year from today

And $\$ 100$ now is equivalent to I00/I.06=\$94.34 one year ago

Equivalence

- Lets recall example of repaying of debt
- To better understand the mechanics of interest, let say that $€ 5000$ is owed and is to be repaid in 5 years together with 8% annual interest..
- Lets use four specific plans to repay
- Plan I: At end of each year pay $€ 1000$ principle plus interest due
- Plan 2: Pay interest at end of each year and principal at end of 5 years
- Plan 3: Pay in five equal end of year payments
- Plan 4: Pay principal and interest in one payment at end of 5 years
- Are all payment plans are equivalent to each other and to $€ 5000$ now at 8% interest rate ??

Technique of equivalence

- We can determine an equivalent value at some point in time for any plan, based on a selected interest rate not from cash flow.
, We can use concept of time value of money and computer money year i.e., euro-year,

Plan	Total Interest Paid	Area Under Curve (euro-years)	Ratio of Total Interest Paid to Area Under Curve
1	$€ 1200$	15,000	0.08
2	2000	25,000	0.08
3	1260	15,767	0.08
4	2347	29,334	0.08

Ratio under the curve is constant and equal at 8% which indicate that repayment plans are actually equivalent

Single payment compound interest formula

- Compound interest arises when interest is added to the principal of a deposit or loan, so that, from that moment on, the interest that has been added also earns interest.
- Compound interest is computed with following formula;

$$
\text { interest }=\mathrm{P} \times(\mathrm{i}+1)^{\mathrm{n}}
$$

- The future sum, F, thus become as;

$$
\mathrm{F}=P(1+i)^{n}
$$

This is called single payment compound interest formula

Single payment compound interest formula

- The single payment formula in functional form can be written as

$$
\mathrm{F}=P(F / P, i, n)
$$

- The notation in parenthesis can be read as follows: "To find a future sum F, given a present sum, P, at an interest rate i per interest period and n interest periods hence" OR simply Find F, given P, at I, over n
- Similarly functional form of determining present value, P, from future sum, F at interest rate, i , over interest period, n , becomes

$$
P=F(P / F, i, n) \quad \because \mathrm{F}(1+i)^{-n}=P
$$

Example: 3-5

- If $€ 500$ were deposited in a bank saving account, how much would be in the account 3 years hence if the bank paid 6% interest compounded annually?
- Solution:
- $P=€ 500$,
- $\mathrm{i}=6 \%=0.06$
- $\mathrm{n}=3$

$$
\begin{aligned}
& \mathrm{F}=P(1+i)^{n} \\
& F=500(1+0.06)^{3} \\
& =595.50
\end{aligned}
$$

Cash Flow Diagram

Example: 3-5

- Alternate Solution:
- $P=€ 500$,
- $\mathrm{i}=6 \%=0.06$
- $\mathrm{n}=3$

$$
\begin{aligned}
& \mathrm{F}=P(F / P, i, n) \\
& \mathrm{F}=500(F / P, 6 \%, 3)
\end{aligned}
$$

Lets use Appendix B, to find F given P, look in the first column, which is headed "single payment", compound amount factor of F / P for $\mathrm{n}=3$ we find $=1.191$

Lets plot now cash flow diagram from Bank's Point of view

Example: 3-6

- If you wish to have $€ 800$ in a saving account at the end of 4 years and 5% interest will be paid annually, how much should you put into saving account now?
- Solution

$$
\begin{aligned}
& F=€ 800 \quad i=0.05 \quad n=4 \quad P=\text { unknown } \\
& P=F(1+i)^{-n}=800(1+0.05)^{-4}=800(0.8227)=€ 658.16
\end{aligned}
$$

Example: 3-6

- Alternate Solution

$$
P=F(P / F, i, n)=€ 800(P / F, 5 \%, 4)
$$

From compound interest table

$$
(P / F, 5 \%, 4)=0.8227
$$

$$
P=€ 800(0.8227)=€ 658.16
$$

Example

- How much do you need to deposit today to withdraw $\$ 25,000$ after I year, $\$ 3,000$ after 2 yrs , and $\$ 5,000$ after 4 yrs , if your account earns 10% annual interest?

$$
P=P_{1}+P_{2}+P_{4}=\$ 28,622
$$

Example

Example

- In 3 years, you need $\$ 400$ to pay a debt. In two more years, you need $\$ 600$ more to pay a second debt. How much should you put in the bank today to meet these two needs if the bank pays 12% per year?

Interest is compounded vearly

```
P=400(P/F,12%,3)+
600(P/F,12%,5)
    = 400(0.7118)+600(0.5674)
    =284.72 + 340.44 =$625.16
```


Also

$$
\begin{aligned}
P & =400(1+12 / 100)^{-3}+600(1+12 / 100)^{-5} \\
P & =625.16
\end{aligned}
$$

Appendix B

; \%	Compound Interest Factors								6\%
	Single Payment		Uniform Payment Series				Arithmetic Gradient		
	Compound Amount Factor	Present Worth Factor	Sinking Fund Factor	Capital Recovery Factor	Compound Amount Factor	Present Worth Factor	Gradient Uniform Series	Gradient Present Worth	
n	Find F Given P F / P	$\begin{gathered} \text { Find } P \\ \text { Given } F \\ P / F \end{gathered}$	Find A Given F A/F	Find A Given P A / P	Find F Given A F / A	Find P Given A P / A	Find A Given C A / G	Find \boldsymbol{P} Given C P / G	n
1	1.060	. 9434	1.0000	1.0600	1.000	0.943	0	0	1
2	1.124	. 8900	. 4854	. 5454	2.060	1.833	0.485	0.890	2
3	1.191	. 8396	. 3141	. 3741	3.184	2.673	0.961	2.569	3
4	1.262	. 7921	. 2286	. 2886	4.375	3.465	1.427	4.945	4
5	1.338	. 7473	. 1774	. 2374	5.637	4.212	1.884	7.934	5
6	1.419	. 7050	. 1434	. 2034	6.975	4.917	2.330	11.459	6
7	1.504	. 6651	. 1191	. 1791	8.394	5.582	2.768	15.450	7
8	1.594	. 6274	. 1010	. 1610	9.897	6.210	3.195	19.841	8
9	1.689	. 5919	. 0870	. 1470	11.491	6.802	3.613	24.577	9
10	1.791	. 5584	. 0759	. 1359	13.18	7.360	4.022	29.602	10

