Engineering Economics

More Interest Formulas

Uniform Series

In chapter 3 (i.e., interest and equivalence), we dealt with single payments compound interest formula:

- Examples:

Uniform Series

• Quite often we have to deal with uniform (equidistant and equal-valued) cash flows during a period of time:

- Remember: A= Series of consecutives, equal, end of period amounts of money (Receipts/disbursement)
- Examples:

Let's compute Future Worth, F, of a stream of equal, end-of-period cash flows, A, at interest rate, i, over interest period, n

For general case, we can write that

$$F = A(1+i)^{n-1} + A(1+i)^{n-2} + A(1+i)^{n-3} + \dots + A$$

$$F = A[(1+i)^{n-1} + (1+i)^{n-2} + (1+i)^{n-3} + \dots + 1]$$

Eq.(1)

Multiplying both sides with (I+i)

$$F(1+i) = A(1+i)^{n} + A(1+i)^{n-1} + A(1+i)^{n-2} + \dots + A(1+i)$$

$$F(1+i) = A\left[(1+i)^{n} + (1+i)^{n-1} + (1+i)^{n-2} + \dots + (1+i)\right] \quad \text{Eq. (2)}$$

▶ Eq. (2)-Eq. (1)

$$F(1+i) = A[(1+i)^{n} + (1+i)^{n-1} + (1+i)^{n-2} + ... + (1+i)]$$
Eq. (2)

$$F = A[(1+i)^{n-1} + (1+i)^{n-2} + (1+i)^{n-3} + ... + 1]$$
Eq. (1)

$$\mathbf{iF} = A\left[\left(1+i\right)^n - 1\right] \qquad \qquad \mathsf{Eq.} (3)$$

$$\mathbf{F} = A \left[\frac{(1+i)^n - 1}{i} \right] = A \left[F / A, i\%, n \right]$$
 Eq. (4)

Where $\left[\frac{(1+i)^n - 1}{i}\right]$ is called uniform series compound amount factor and has notation $\left[F / A, i\%, n\right]$

• Eq. (4) can also be written as

$$A = F\left[\frac{i}{(1+i)^n - 1}\right] = F\left[A/F, i\%, n\right]$$
 Eq. (5)

Where
$$\left[\frac{i}{(1+i)^n - 1}\right]$$
 is called uniform series sinking fund
factor and has notation $\left[A/F, i\%, n\right]$

$$\left[\frac{Find}{given}, i\%, n\right]$$

<u>Example 4-1</u>: You deposit \$500 in a bank at the end of each year for five years. The bank pays 5% interest, compounded annually. At the end of five years, immediately following your fifth deposit, how much will you have in this account?

 $= \frac{500[(1.05)^5 - 1]}{(0.05)} = \frac{500}{(5.5256)} = \frac{2,762.82}{2,763}$

Example 4-2: How much money do you put in bank every month to have \$1,000 at the end of the year. Assume you will put the same amount in the bank each month and the bank pays 1/2 % interest monthly?

A = 1000 (A/F, ½%,12) = 1000 (0.0811) = \$81.10/month

$$A = F\left[\frac{i}{(1+i)^n - 1}\right] =$$

¹ / ₂ %	Compound Interest Factors								1/2%
	Single Payment		Uniform Payment Series				Arithmetic Gradient		5
	Compound Amount Factor Find F Given P F/P	Present Worth Factor Find P Given F P/F	Sinking Fund Factor Find A <u>Given F</u> A/F	Capital Recovery Factor Find A Given P A/P	Compound Amount Factor Find F Given A F/A	Present Worth Factor Find P Given A P/A	Gradient Uniform Series Find A Given G A/G	Gradient Present Worth Find P Given G P/G	n
	1.010	.9901	.4988	.5038	2.005	1.985	0.499	0.991	
23	1.015	.9851	.3317	.3367	3.015	2.970	0.996	2.959	
4	1.020	.9802	.2481	.2531	4.030	3.951	1.494	5.903	
5	1.025	.9754	.1980	.2030	5.050	4.926	1.990	9.803	
6	1.030	.9705	.1646	.1696	6.076	5.896	2.486	14.660	1
7	1.036	.9657	.1407	.1457	7.106	6.862	2.980	20.448	
8	1.041	.9609	.1228	.1278	8.141	7.823	3.474	27.178	
9	1.046	.9561	.1089	.1139	9.182	8.779	3.967	34.825	
10	1.051	.9513	.0978	.1028	10.228	9.730	4.459	43.389	1
11	1.056	.9466	.0887	.0937	11.279	10.677	4.950	52.855	1
12	1.062	.9419	.0811	.0861	12.336	11.619	5.441	63.218	1
13	1.067	.9372	.0746	.0796	13.397	12.556	5.931	74.465	1
14	1.072	.9326	.0691	.0741	14.464	13.489	6.419	86.590	1
15	1.078	.9279	.0644	.0694	15.537	14.417	6.907	99.574	1

 If we use the sinking fund formula (Eq. 5) and substitute the single payment compound amount formula, we obtain

$$A = F\left[\frac{i}{(1+i)^{n}-1}\right] = P(1+i)^{n}\left[\frac{i}{(1+i)^{n}-1}\right] \qquad \because F = P(1+i)^{n}$$
$$A = P\left[\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right] = P(A/P, i\%, n) \qquad \text{Eq. (6)}$$

It means we can determine the values of A when the present sum P is known

Where
$$\left[\frac{i(1+i)^n}{(1+i)^n-1}\right]$$
 is called uniform series capital

recovery factor and has notation P(A/P, i%, n)

• Eq. (6) can be rewritten as

$$P = A \left[\frac{(1+i)^{n} - 1}{i(1+i)^{n}} \right] = A (P / A, i\%, n)$$
Eq. (7)

It means we can determine present sum P when the value of A is known

Where $\left| \frac{(1+i)^n - 1}{i(1+i)^n} \right|$ is called uniform series present

worth factor and has notation A(P/A, i%, n)

<u>Example 4-3:</u> Suppose on January 1 you deposit \$5,000 in a bank paying 8% interest, compounded annually. You want to withdraw all the money in five equal end-of year sums, beginning December 31st of the first year.

Solution:

Given: P = \$5000 n = 5 i = 8% A = unknown

 $A = P (A/P,8\%,5) = P\{[i (1 + i)^n]/[(1+i)^n - 1]\}$ = 5000 (0.2504564545) = \$1,252.28

The withdrawal amount is about \$1,252

Note: This is the source of the \$1,252 in Plan C from Chapter 3

Compute the value of the following cash flows at the end of year 5 given i = 15%.

The Sinking Fund Factor diagram is based on the assumption the withdrawal coincides with the last deposit. This does not happen in this example.

What we have is:

The standard approach is:

 $\begin{array}{c|c}
A & A & A \\
\hline
1 & 2 & 3 \\
& & & F
\end{array}$

Use the "standard" approach to compute F_1 . Then compute the future value of F_1 to get F. $F_1 = 100 (F/A, 15\%, 3) = 100 (3.472)$ = \$347.20 $F = F_1 (F/P, 15\%, 2) = 347.20 (1.322)$

= \$459.00

<u>Second Approach</u>: Compute the future values of each deposit then add them.

 $F = F_1 + F_2 + F_3$ = 100(F/P,15%,4) + 100(F/P,15%,3) + 100(F/P,15%,2) = 100 (1.749) + 100 (1.521) + 100 (1.322) = \$459.20

More interest Formulas

- Uniform Series
- Arithmetic Gradient
- Geometric Gradient
- Nominal and Effective Interest
- Continuous Compounding

- It's frequently happen that the cash flow series is not constant amount.
- It probably is because of operating costs, construction costs, and revenues to increase of decrease from period to period by a constant percentage

P = P' + P'' = A(P/A, i, n) + G(P/G, i, n)

 Let the cash flows increase/decrease by a uniform fixed amount G every subsequent period

Write a future worth value for each period individually, and add them

$$F = G(1+i)^{n-2} + 2G(1+i)^{n-3} + \dots + (n-2)G(1+i)^{1} + (n-1)G(1+i)^{0}$$

$$F = G\left[(1+i)^{n-2} + 2(1+i)^{n-3} + \dots + (n-2)(1+i)^{1} + (n-1)\right]$$
Eq. (1)

Multiplying Eq. (1) with (1+i), we get

$$(1+i)F = G\left[(1+i)^{n-1} + 2(1+i)^{n-2} + \dots + (n-2)(1+i)^2 + (n-1)(1+i)^1\right]$$
 Eq. (2)

• Eq. (2)-Eq. (1)

$$(1+i)F = G[(1+i)^{n-1} + 2(1+i)^{n-2} + ... + (n-2)(1+i)^{2} + (n-1)(1+i)^{1}]$$

$$F = G[(1+i)^{n-2} + 2(1+i)^{n-3} + ... + (n-2)(1+i)^{1} + (n-1)]$$

$$iF = G\left[\frac{(1+i)^{n-1} + (1+i)^{n-2} + \dots + (1+i)^2 + (1+i)^1 - n + 1}{iF}\right]$$

$$iF = G\left[\frac{(1+i)^{n-1} + (1+i)^{n-2} + \dots + (1+i)^2 + (1+i)^1 + 1}{i}\right] - nG$$

$$F = G\left[\frac{(1+i)^n - 1}{i}\right] - nG$$

$$F = G\left[\frac{(1+i)^n - 1}{i} - n\right] = G\left[\frac{(1+i)^n - 1 - ni}{i^2}\right]$$

$$F = G\left[\frac{(1+i)^n - in - 1}{i^2}\right] = G\left[F / G, i\%, n\right]$$
Arithmetic gradient future eq. (4) worth factor

$$iF(1+i) = G\left[(1+i)^{n} + (1+i)^{n-1} + \dots + (1+i)^{3} + (1+i)^{2} + (1+i)\right] - nG(1+i)$$

$$iF = G\left[(1+i)^{n-1} + (1+i)^{n-2} + \dots + (1+i)^{2} + (1+i)^{1} + 1\right] - nG$$

$$iiF = G\left[(1+i)^n - 1\right] - nGi$$
$$iF = G\left[\frac{(1+i)^n - 1}{i}\right] - nG$$

-

 Substituting F from single payment compound formula, we can write Eq.(4) as
 Recall

$$P = G\left[\frac{(1+i)^n - in - 1}{(1+i)^n i^2}\right] = G[P/G, i\%, n]$$
F = P (1+i)ⁿ
Eq. (5)

- (P/G ,i%, n) is known as Arithmetic gradient present worth factor
- Now substituting value of F from uniform series compound amount factor, we can write Eq. (4) as

$$F = G\left[\frac{(1+i)^{n} - in - 1}{i^{2}}\right] = A\left[\frac{(1+i)^{n} - 1}{i}\right]$$

$$A = G\left[\frac{i((1+i)^{n} - in - 1)}{((1+i)^{n} - 1)i^{2}}\right]$$

$$Y = A\left[\frac{(1+i)^{n} - 1}{i}\right]$$

$$A = G(A/G, i\%, n)$$

(A/G, i%, n) is known as Arithmetic gradient uniform series factor

Arithmetic Gradient Present Worth - (P/G, i%, n): $P = G\left[\frac{(1+i)^n - in - 1}{i^2(1+i)^n}\right]$

Arithmetic Gradient Future Worth - (F/G, i%, n):

$$F = G\left[\frac{\left(1+i\right)^n - in - 1}{i^2}\right]$$

Arithmetic Gradient Uniform Series - (A/G, i%, n):

$$A = G\left[\frac{1}{i} - \frac{n}{\left(1+i\right)^n - 1}\right]$$

Suppose you buy a car. You wish to set up enough money in a bank account to pay for standard maintenance on the car for the first five years. You estimate the maintenance cost increases by G = \$30 each year. The maintenance cost for year 1 is estimated as \$120. i = 5%. Thus, estimated costs by year are \$120, \$150, \$180, \$210, \$240.

We break up the cash flows into two components:

Maintenance costs of a machine start at \$100 and go up by \$100 each year for 4 years. What is the equivalent uniform annual maintenance cost for the machinery if i= 6%.

- First part is in the form of a \$100 uniform series.
- Second part is now in the standard form for the gradient equation with n = 4, G = 100

$$A = A_1 + G (A/G, 6\%, 4) = 100 + 100 (1.427)$$

= \$242.70

Example 4-10: With i = 10%, n = 4, find an equivalent uniform payment A for the following CFD

> This is a problem with decreasing costs <u>instead</u> of increasing costs.

Solution:

• The cash flow can be rewritten as the DIFFERENCE of the following two diagrams: (1) the standard form we need for arithmetic gradient, and (2) a series of uniform payments.

 $A = A_1$

=

= 24,000

- G(A/G,10%,4)
- 6,000 (A/G,10%,4)

- = 24,000
 - 15,714

- 6,000(1.381)