Engineering Economics

Annual Cash Flow Analysis

Annual Cash Flow Analysis

Concepts of Annual Cash Flow Analysis

Comparing Alternatives using Annual Cash Flow Analysis:

- Same-Length Analysis Period
- Different-Length Analysis Periods
- Infinite-Length Analysis Period
- Other Analysis Periods

Techniques for Cash Flow Analysis

Present Worth Analysis:

- $PW_{A} = -R_{A} + A_{A} (P/A, i, n) + S_{A} (P/F, i, n)$
- $PW_{B} = -R_{B} + R_{B} (P/A, i, n) + S_{B} (P/F, i, n)$
- If PW_A>PW_B => Choose A,
 otherwise => choose B.

Annual Cash Flow Analysis:

- EUAC: Equivalent Uniform Annual Cost
 EUAC_A=R_A(A/P,i,n); EUAC_B=R_B(A/P,i,n)
- EUAB: Equivalent Uniform Annual Benefit
 EUAB_A=A_A+S_A(A/F,i,n); EUAB_B=A_B+S_B(A/F,i,n)
- (EUAB-EUAC)_A=A+S_A(A/F,i,n)- $R_A(A/P,i,n)$
- (EUAB-EUAC)_B=B+S_B(A/F,i,n)- $R_B(A/P,i,n)$
- If (EUAB-EUAC)_A>(EUAB-EUAC)_B
 > Choose A, otherwise => choose B.

Compute the value of C for the following diagram, based on "10% interest rate.

As shown in the cash flow diagram, there is an annual disbursement of money that varies from year to year from \$100 to \$300 in a fixed pattern that repeats forever. If interest is 10%, compute the value of A, also continuing forever, that is equivalent to the fluctuating disbursements.

There is a repeating series:; 100 - 200 - 300 - 200. Solving this series for A gives us the A for the infinite series.

A = \$100 + [\$100 (P/F, 10%, 2) + \$200 (P/F, 10%, 3) + \$100 (P/F, 10%, 4)] (A/P, 10%, 4)= \$100 + [\$100 (0.8254) + \$200 (0.7513) + \$100 (0.6830)] (0.3155) = \$100 + [\$301.20] (0.3155) = \$195.03

Annual Cash Flow Analysis

• The basic idea is to convert all cash flows to a series of EUAW (equivalent uniform annual worth):

Net EUAW = EUAB -EUAC

- EUAC: Equivalent Uniform Annual Cost
- EUAB: Equivalent Uniform Annual Benefit
- An expenditure increases EUAC and a receipt of money decreases EUAC.
- To convert a PW of a cost to EUAC, use:

EUAC = (PW of cost) (A/P, i%, n)

Where there is salvage value?

A = F(A/F, i%, n)

- A salvage value will reduce EUAC and increase EUAB
- When there is an arithmetic gradient, use the (A/G, i%, n) factor.
- If there are irregular cash flows, try to first find PW of these flows; then, EUAC may be calculated from this PW.
- Criteria for selection of an alternative:
 - Maximize Net EUAW (EUAB EUAC)
 - Minimize EUAC OR Maximize EUAB

Analysis Period Equal to Alternative Lives

• We have an ideal situation (rarely the case in 'real-life'):

- Study period = life-cycle of any of the alternatives
- Example 6-6: In addition to the do-nothing alternative, three alternatives are being considered for improving the operation of an assembly line. Each of the alternatives has a 10-years life and a scrap value equal to 10% of its original cost. If interest is 8%, which alternative should be adopted.

Plan	А	В	С
Installed cost of equipment	\$15,000	\$25,000	\$33,000
Material and labor savings per year	\$14,000	\$9,000	\$14,000
Annual operating expense	\$8,000	\$6,000	\$6,000
End-of-useful life scrap value	\$1,500	\$2,500	\$3,300

Analysis Period Equal to Alternative Lives

Analysis Period Equal to Alternative Lives

Plan	Α	в	С	Do Nothing
EUAB				
Material and labor savings per year	\$14,000	\$9,000	\$14,000	\$0
Scrap value (A/F,8%,10)	\$104	\$172	\$228	0
Total EUAB	\$14,104	\$9,172	\$14,228	\$0
EUAC				
Installed cost (A/P,8%,10)	\$2,235	\$3,725	\$4,927	0
Annual operating expenses	\$8,000	\$6,000	\$6,000	0
Total EUAC	\$10,235	\$9,725	\$10,927	0
EUAB - EUAC	\$3,869	-\$553	\$3,311	\$0

(A/F,8%,10) = 0.0690

▶ (A/P,8%,10) = 0.1490

Choose Plan A

Two possible routes for a power line are under study. Data on the routes are as follows:

	Around	Under	
	the Lake	the Lake	
Length	15 km	5 km	
First cost	\$5000/km	\$25,000/km	
Maintenance	\$200/km/yr	\$400/km/yr	
Useful life, in years	15	15	
Salvage value	\$3000/km	\$5000/km	
Yearly power loss	\$500/km	\$500/km	
Annual property taxes	2% of first cost	2% of first cost	

If 7% interest is used, should the power line be routed around the lake or under the lake? (Answer: Around the lake.)

Length First cost Maintenance Useful life, in years Salvage value Yearly power loss Annual property taxes Around the Lake 15 km \$5000/km \$200/km/yr 15 \$3000/km \$500/km 2% of first cost Under the Lake 5 km \$25,000/km \$400/km/yr 15 \$5000/km \$500/km \$500/km 2% of first cost

First Cost Maintenance Annual Power Loss Property Taxes Salvage Value Useful Life Around the Lake \$75,000 \$3,000/yr \$7,500/yr \$1,500/yr \$45,000 15 years Under the Lake \$125,000 \$2,000/yr \$2,500/yr \$2,500/yr \$25,000 15 years

Around the Lake

EUAC = \$75,000 (A/P, 7%, 15) + \$12,000 - \$45,000 (A/F, 7%, 15) = \$75,000 (0.1098) + \$12,000 - \$45,000 (0.0398) = \$18,444

Under the Lake

EUAC = \$125,000 (A/P, 7%, 15) + \$7,000 - \$25,000 (A/F, 7%, 15)= \$125,000 (0.1098) + \$7,000 - \$25,000 (0.0398)= \$19,730Go around the lake.