Engineering Economics

Annual Cash Flow Analysis

Annual Cash Flow Analysis

- Concepts of Annual Cash Flow Analysis
- Comparing Alternatives using Annual Cash Flow Analysis:
- Same-Length Analysis Period
- Different-Length Analysis Periods
- Infinite-Length Analysis Period
- Other Analysis Periods

Techniques for Cash Flow Analysis

- Present Worth Analysis:
- $\mathrm{PW}_{\mathrm{A}}=-\mathrm{R}_{\mathrm{A}}+\mathrm{A}_{\mathrm{A}}(\mathrm{P} / \mathrm{A}, \mathrm{i}, \mathrm{n})+\mathrm{S}_{\mathrm{A}}(\mathrm{P} / \mathrm{F}, \mathrm{i}, \mathrm{n})$
- $\mathrm{PW}_{\mathrm{B}}=-\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{B}}(\mathrm{P} / \mathrm{A}, \mathrm{i}, \mathrm{n})+\mathrm{S}_{\mathrm{B}}(\mathrm{P} / \mathrm{F}, \mathrm{i}, \mathrm{n})$
- If $\mathrm{PW}_{\mathrm{A}}>\mathrm{PW}_{\mathrm{B}}=>$ Choose A ,
b otherwise => choose B.
- Annual Cash Flow Analysis:

- EUAB: Equivalent Uniform Annual Benefit
- $\mathrm{EUAB}_{\mathrm{A}}=\mathrm{A}_{\mathrm{A}}+\mathrm{S}_{\mathrm{A}}(\mathrm{A} / \mathrm{F}, \mathrm{i}, \mathrm{n}) ; \mathrm{EUAB}_{\mathrm{B}}=\mathrm{A}_{\mathrm{B}}+\mathrm{S}_{\mathrm{B}}(\mathrm{A} / \mathrm{F}, \mathrm{i}, \mathrm{n})$
- (EUAB-EUAC) $A_{A}=A+S_{A}(A / F, i, n)-R_{A}(A / P, i, n)$
- (EUAB-EUAC) ${ }_{B}=\mathrm{B}+\mathrm{S}_{\mathrm{B}}(\mathrm{A} / \mathrm{F}, \mathrm{i}, \mathrm{n})-\mathrm{R}_{\mathrm{B}}(\mathrm{A} / \mathrm{P}, \mathrm{i}, \mathrm{n})$

- If $(E U A B-E U A C)_{A}>(E U A B-E U A C)_{B}$
b => Choose A, otherwise => choose B.

Problem 6-1

- Compute the value of C for the following diagram, based on " 10% interest rate.

Problem 6-8

- As shown in the cash flow diagram, there is an annual disbursement of money that varies from year to year from $\$ 100$ to $\$ 300$ in a fixed pattern that repeats forever. If interest is 10%, compute the value of A, also continuing forever, that is equivalent to the fluctuating disbursements.

Problem 6-8

Pattern repeats infinitely

There is a repeating series:; $100-200-300-200$. Solving this series for A gives us the A for the infinite series.

Problem 6-8

$$
\begin{aligned}
A= & \$ 100 \\
=\$ 100 & +[\$ 100(\mathrm{P} / \mathrm{F}, 10 \%, 2)+\$ 200(\mathrm{P} / \mathrm{F}, 10 \%, 3)+\$ 100(\mathrm{P} / \mathrm{F}, 10 \%, 4)](\mathrm{A} / \mathrm{P}, \mathrm{I} 0 \%, 4) \\
& =\$ 100+[\$ 301.20](0.3155) \\
& =\$ 195.03
\end{aligned}
$$

Annual Cash Flow Analysis

- The basic idea is to convert all cash flows to a series of EUAW (equivalent uniform annual worth):

Net EUAW = EUAB -EUAC

- EUAC: Equivalent Uniform Annual Cost
- EUAB: Equivalent Uniform Annual Benefit
- An expenditure increases EUAC and a receipt of money decreases EUAC.
- To convert a PW of a cost to EUAC, use:

$$
\text { EUAC = (PW of cost) }(\mathrm{A} / \mathrm{P}, \mathrm{i} \%, \mathrm{n})
$$

- Where there is salvage value?

$$
A=F(A / F, i \%, n)
$$

- A salvage value will reduce EUAC and increase EUAB
- When there is an arithmetic gradient, use the (A/G, i\%, n) factor.
- If there are irregular cash flows, try to first find PW of these flows; then, EUAC may be calculated from this PW.
- Criteria for selection of an alternative:
- Maximize Net EUAW (EUAB -EUAC)
- Minimize EUAC OR Maximize EUAB

Analysis Period Equal to Alternative Lives

- We have an ideal situation (rarely the case in 'real-life'):
- Study period $=$ life-cycle of any of the alternatives
- Example 6-6: In addition to the do-nothing alternative, three alternatives are being considered for improving the operation of an assembly line. Each of the alternatives has a 10 -years life and a scrap value equal to 10% of its original cost. If interest is 8%, which alternative should be adopted.

Plan	A	B	C
Installed cost of equipment	$\$ 15,000$	$\$ 25,000$	$\$ 33,000$
Material and labor savings per year	$\$ 14,000$	$\$ 9,000$	$\$ 14,000$
Annual operating expense	$\$ 8,000$	$\$ 6,000$	$\$ 6,000$
End-of-useful life scrap value	$\$ 1,500$	$\$ 2,500$	$\$ 3,300$

Analysis Period Equal to Alternative Lives

Plan A

Plan B

Analysis Period Equal to Alternative Lives

Plan	A	B	C	Do Nothing
EUAB				
Material and labor savings per year	\$14,000	\$9,000	\$14,000	\$0
Scrap value (A/F, $8 \%, 10$)	\$104	\$172	\$228	0
Total EUAB	\$14,104	\$9,172	\$14,228	\$0
EUAC				
Installed cost (A/P,8\%,10)	\$2,235	\$3,725	\$4,927	0
Annual operating expenses	\$8,000	\$6,000	\$6,000	0
Total EUAC	\$10,235	\$9,725	\$10,927	0
EUAB - EUAC	\% \$3,869**	-\$553	\$3,311	\$0
$\begin{aligned} & (\mathrm{A} / \mathrm{F}, 8 \%, 10)=0.0690 \\ & (\mathrm{~A} / \mathrm{P}, 8 \%, 10)=0.1490 \end{aligned}$		Choose P	an A	

Problem 6-32

Two possible routes for a power line are under study. Data on the routes are as follows:

	Around the Lake	Under the Lake
Length	15 km	5 km
First cost	$\$ 5000 / \mathrm{km}$	$\$ 25,000 / \mathrm{km}$
Maintenance	$\$ 200 / \mathrm{km} / \mathrm{yr}$	$\$ 400 / \mathrm{km} / \mathrm{yr}$
Useful life, in years	15	15
Salvage value	$\$ 3000 / \mathrm{km}$	$\$ 5000 / \mathrm{km}$
Yearly power loss	$\$ 500 / \mathrm{km}$	$\$ 500 / \mathrm{km}$
Aonual property taxes	2% of first cost	2% of first cost

If 7% interest is used, should the power line be routed around the lake or under the lake? (Answer: Around the lake.)

Problem 6-32

Length
First cost
Maintenance
Useful life, in years
Salvage value
Yearly power loss
Annual property taxes
Around Under
the Lake the Lake
$15 \mathrm{~km} \quad 5 \mathrm{~km}$
$\$ 5000 / \mathrm{kmo} \quad \$ 25,000 / \mathrm{km}$
$\$ 200 / \mathrm{km} / \mathrm{yr} \quad \$ 400 / \mathrm{km} / \mathrm{yr}$
15
$\$ 3000 / \mathrm{km} \quad \$ 5000 / \mathrm{km}$
$\$ 500 / \mathrm{km} \quad \$ 500 / \mathrm{km}$
2% of first cost 2% of first cost

First Cost
Maintenance
Annual Power Loss
Property Taxes
Salvage Value
Useful Life

Around the Lake

 \$75,000\$3,000/yr
\$7,500/yr
\$1,500/yr
\$45,000
15 years

Under the Lake
\$125,000
\$2,000/yr
\$2,500/yr
\$2,500/yr
\$25,000
15 years

Problem 6-32

Around the Lake
EUAC $=\$ 75,000(A / P, 7 \%, 15)+\$ 12,000-\$ 45,000(A / F, 7 \%, 15)$

$$
\begin{aligned}
& =\$ 75,000(0.1098)+\$ 12,000-\$ 45,000(0.0398) \\
& =\$ 18,444
\end{aligned}
$$

Under the Lake
EUAC $=\$ 125,000(A / P, 7 \%, 15)+\$ 7,000-\$ 25,000(A / F, 7 \%, 15)$
$=\$ 125,000(0.1098)+\$ 7,000-\$ 25,000(0.0398)$
= \$19,730
Go around the lake.

