Engineering Economics

Rate of Return Analysis

Outcome of Today's Lecture

- After completing this lecture...
- The students should be able to:
- Evaluate project cash flows with the internal rate of return measure
- Plot a project's present worth against the interest rate
- Use an incremental rate of return analysis to evaluate competing alternatives

Techniques for Cash Flow Analysis

- Present Worth Analysis
- Annual Cash Flow Analysis
- Rate of Return Analysis
- Incremental Analysis
- Other Techniques:
- Future Worth Analysis
- Benefit-Cost Ratio Analysis
- Payback Period Analysis

Rate of Return Analysis

- Internal Rate of Return
- Calculating Rate of Return
- Rate of Return Analysis
- Incremental Cash Flow Analysis

Internal Rate of Return (IRR) Lender's Viewpoint

Year	Cash flow	1. We know that the PW of five payments of $\$ 1,252$ are equivalent to $\$$
-5000 1 +1252	2. At the end of 5 years, the payments exactly repaid the $\$ 5,000$ debt with	
2	+1252	interest rate 8%. We say the lender 3
4	+1252	received 8% rate of return.
5	+1252	

- The interest rate on the balance of a loan such that the unpaid loan balance equals zero when the final payment is made

Internal Rate of Return (IRR)

- Simple Definition:
- Given a cash flow stream, rate of return (a.k.a. IRR) is the interest rate i^{*} at which the benefits are equivalent to the costs:
- NPW=0
- PW of benefits - PW of costs $=0$
- PW of benefits $=\mathrm{PW}$ of costs
- PW of benefits / PW of costs = I
(EUAB -EUAC $=0$

Internal Rate of Return (IRR)

- Suppose you have the following cash flow stream. You invest \$700, and then receive $\$ 100, \$ 175, \$ 250$, and $\$ 325$ at the end of years I, 2, 3 and 4 respectively. What is the IRR for your investment?

\$700

- $700=100 /(1+\mathrm{i})+175 /(1+\mathrm{i})^{2}+250 /(1+\mathrm{i})^{3}+325 /(1+\mathrm{i})^{4}$
- Solving for i >>> It turns out that $i^{*}=6.09 \%$

Calculating Internal Rate of Return

- Ways to find the IRR:
- I. Compound Interest Tables (you may need to use interpolation)
- 2.Trial-and-error
- 3. Numerically (Excel's IRR function, MATLAB, or other root finding methods)
- 4. Graphically
- If you have a CFS with an investment (-P) followed by benefits (non negative) from the investment:
- The graph of NPW versus i will have the same general form.
- It will decrease at a decreasing rate and have a value 0 at some unique value i^{*}.
- Where the graph has a value 0 defines the IRR.

$$
\begin{gathered}
\mathrm{NPW}=-700+100 /(1+\mathrm{i})+175 /(1+\mathrm{i})^{2}+ \\
250 /(1+\mathrm{i})^{3}+325 /(1+\mathrm{i})^{4}
\end{gathered}
$$

Example 1: Solution Using Interest Tables

- Given the following CFD, find i^{*}
- $P W B / P W C=1$
- $1252(\mathrm{P} / \mathrm{A}, \mathrm{i}, 5) / 5000=1$

($(P / A, i, 5)=5000 / I 252=3.993$
- From Compound Interest Tables:

Interest rate	$(\mathrm{P} / \mathrm{A}, \mathrm{i}, 5)$
7%	4.100
8%	3.993
9%	3.890

Example 2: Solution Using Interest Tables

- An investment resulted in the following cash flow. Compute the rate of return.

$$
\begin{array}{r}
\text { EUAB }- \text { EUAC }=0 \\
100+75(A / G, i, 4)-700(A / P, i, 4)=0
\end{array}
$$

Year	Cash Flow
0	$-\$ 700$
1	+100
2	+175
3	+250
4	+325

Solve the equation by trial and error

$$
\begin{array}{lr}
\text { At } i=5 \%, & \text { EUAB }-\mathrm{EUAC}=208-197=+11 \\
\text { At } i=8 \%, & \mathrm{EUAB}-\mathrm{EUAC}=205-211=-6 \\
i=7 \%: & \mathrm{EUAB}-\mathrm{EUAC}=0
\end{array}
$$

Example 3: Graphical Solution

- Given the following CFS, find i^{*}

Year	Cash
0	-100
1	20
2	30
3	20
4	40
5	40

- PW of costs $=$ PW of benefits
- $100=20 /(1+\mathrm{i})+30 /(1+\mathrm{i})^{2}+20 /(1+\mathrm{i})^{3}+$ $40 /(1+i)^{4}+40 /(1+i)^{5}$
- $N P W=-100+20 /(1+i)+30 /(1+i)^{2}+$ $20 /(1+i)^{3}+40 /(1+i)^{4}+40 /(1+i)^{5}$

NPW

Problem: 7-1

- $\$ 125=\$ 10(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 6)+\$ 10(\mathrm{P} / \mathrm{G}, \mathrm{i} \%, 6)$
- LHS=RHS
at I 2%, RHS= $\$ 10(4.1 \mathrm{II})+\$ 10(8.930)=\$ 130.4$
at 15%, RHS $=\$ 10(3.784)+\$ 10(7.937)=\$ 117.2$
- $i^{*}=12 \%+(3 \%)((130.4-125) .(I 30.4-I \mid 7.2))=13.23 \%$

Problem 7-8

Year	Cash Flow	
0	$-\$ 400$	$\mathrm{PWC}=\$ 400$
1	0	$\mathrm{PWB}=[\$ 200(P / A, \mathrm{i} \%, 4)-\$ 50(\mathrm{P} / \mathrm{G}$,
2	+200	$\mathrm{i} \%, 4)](\mathrm{P} / \mathrm{F}, \mathrm{i} \%, 1)$
3	+150	
4	+100	$\mathrm{PWC}=\mathrm{PWB}$
5	+50	

, Try i=7\%

- PWB $=[\$ 200(3.387)-\$ 50(4.795)](0.9346)=409.03$
- Tryi=8\%
- PWB=[\$200 (3.3|2) - \$50 (4.650)] (0.9259) $=\$ 398.08$
) $\mathrm{i}^{*}=7 \%+(1 \%)[(\$ 409.03-\$ 400) /(\$ 409.03-\$ 398.04)]$
$=7.82 \%$

Problem 7-10

Solve the following cash flow for the rate of return to within an $1 / 2 \%$.

Year	Cash Flow
0	$-\$ 500$
1	-100
2	+300
3	+300
4	+400
5	+500

$P W C=\$ 500+\$ 100(P / F, i \%, 1)$
PWB $=\$ 300(P / A, i \%, 2)(P / F, i \%, 1)+\$ 400(P / F, i \%, 4)+\$ 500(P / F, i \%, 5)$
PWC-PWB=0

Problem 7-10

- Try i=30\%
- $\mathrm{PWC}=\$ 500+\$ 100$ (0.7692)= \$576.92
- $\mathrm{PWB}=\$ 300(\mathrm{I} .36 \mathrm{I})(0.7692)+\$ 400(0.650 \mathrm{I})+\$ 500(0.2693)=$ \$588.75
- $\mathrm{PWC}-\mathrm{PWB}=11.83$
- Tryi=35\%
- $\mathrm{PWC}=\$ 500+\$ 100(0.7407)=\$ 574.07$
- $\mathrm{PWB}=\$ 300(\mathrm{I} .289)(0.7407)+\$ 400(0.30 \mathrm{II})+\$ 500(0.2230)=$ \$5I8.37
- PWC-PWB= 55.70
- Rate of Return, $\mathrm{i}^{*}=30 \%+(5 \%)[11.83 / 55.70)=31.06 \%$
- Exact Answer: 30.81\%

Rate of Return (RoR) Analysis

- Example statements about a project:
- The net present worth of the project is $\$ 32,000$
- The equivalent uniform annual benefit is $\$ 2,800$
- The project will produce a 23% rate of return
- The third statement is perhaps most widely understood.
- Rate of return analysis is probably the most frequently used analysis technique in industry.
- Its major advantage is that it provides a figure of merit that is readily understood.

Rate of Return (RoR) Analysis

- Rate of return analysis has another advantage:With NPW or EUAB one must choose an interest rate for using in the calculations.
- This choice may possibly be difficult or controversial.
- With RoR analysis no (exterior) interest rate is introduced into the calculations.
- Instead, we compute a RoR from the CFS.
- Warning: Relying only on RoR is not always a good idea.

Rate of Return (RoR) Analysis

- Example: Which of the following two investment options would you select?
- Option I:
- Invest $\$ 2,000$ today. At the end of years I, 2, and 3 get $\$ 100$, $\$ 100$, and $\$ 500$ profit; at the end of year 4 , you get $\$ 2,200$.
- Option 2:
- Invest \$2,000 today. At the end of years I, 2, and 3 get $\$ 100$, $\$ 100$, and $\$ 100$ profit; at the end of year 4 , you get $\$ 2,000$.

Rate of Return (RoR) Analysis

- Find out the implicit interest rate you would be receiving; that is, solve for the interest rate in which the PW of benefits are equal to your payments $\$ 2,000$.
- Option I:
- $2000=100 /(1+\mathrm{i})^{1}+100 /(1+\mathrm{i})^{2}+500 /(1+\mathrm{i})^{3}+2200 /(1+\mathrm{i})^{4}$
- IRR: $\mathrm{i}=10.78 \%$
- Option 2:
- $2000=100 /(1+\mathrm{i})^{1}+100 /(1+\mathrm{i})^{2}+100 /(1+\mathrm{i})^{3}+2000 /(1+\mathrm{i})^{4}$
- IRR: $i=3.82 \%$

Which deal would you prefer?

The Minimum Attractive Rate of Return (MARR)

- The MARR is a minimum return the company will accept on the money it invests
- The MARR is usually calculated by financial analysts in the company and provided to those who evaluate projects
- It is the same as the interest rate used for Present Worth and Annual Worth analysis.

Incremental Cash Flow Analysis (\triangle CFS)

- Suppose you must choose between projects A or B .
- We can rewrite the CFS for B as $\mathrm{B}=\mathrm{A}+(\mathrm{B}-\mathrm{A})$.
- In this representation B has two CFS components:
- I. the same CFS as A, and
- 2. the incremental component $(B-A)$.
- B is preferred to A when the IRR on the difference ($B-A$) exceeds the MARR.
- Thus, to choose one between B and A, IRR analysis is done by computing the IRR on the incremental investment (B-A) between the projects.

Incremental Cash Flow Analysis (Δ CFS)

- Steps to conduct \triangle CFS on two CFS's:
- I. Number them CFSI and CFS2, with CFSI having the largest initial (year 0) cost (in absolute value)
- 2. Compute $\triangle C F S=$ CFSI-CFS2 (It's year 0 entry must be negative)
- 3. Find the IRR for \triangle CFS, say $\Delta I R R$
- 4. If $\triangle I R R \geq$ MARR, choose CFSI; if not, choose CFS2
- Example:There are two cash flows: $(-20,28)$ and $(-10,15)$ and MARR = 6\%.
- I.CFSI $=(-20,28)$, CFS2 $=(-I 0, I 5)$
- $2 . \Delta$ CFS $=$ CFSI $-C F S 2=(-10,13)$
- $3 . \Delta I R R=30 \%$.
- 4. Δ IRR $>$ MARR $=>$ we choose CFSI $=(-20,28)$

Incremental Cash Flow Analysis (Δ CFS)

- In summary, we compute the CFS for the difference between the projects by subtracting the cash flow for the lower investment-cost project (A) from that of the higher investment-cost project (B).
- Then, the decision rule is as follows:
- IF $\Delta I R_{\text {B-A }}>$ MARR, select B
- IF $\Delta I R R_{B-A}=$ MARR, select either A or B
- IF $\Delta I R R_{B-A}<M A R R$, select A
- Here, B-A is an investment increment.

Why We Use $\triangle I R R$ in IRR analysis?

Years	A	B	B-A		
0	-10	-20	-10	MARR $=6 \%$	
1	15	28	13		
IRR	50%	40%		Select A	
$\Delta I R R_{B-A}$		30%	MARR $<\Delta I R R_{B-A}$	Select B	
NPV	3.92	6.05		Select B	

- Although the rate of return of A is higher than B, B got $\$ 8$ return from the $\$ 20$ investment and A only got $\$ 5$ return from $\$ 10$ investment.
- Project B : you put $\$ 20$ in project B to get a return $\$ 8$.
- Project A : you put $\$ 10$ in project A (and $\$ 10$ in your pocket) to get a return \$5.
- From this example, we know that we can't evaluate two projects by comparing the IRRs of the projects. Instead, we use $\triangle I R R$ and MARR to make the decision.

Problem 7-47

Two alternatives are as follows:

Year	A	B
0	$-\$ 2000$	$-\$ 2800$
1	+800	+1100
2	+800	+1100
3	+800	+1100

If 5% is considered the minimum attractive rate of return, which alternative should be selected?

Problem 7-47

Year	A	B	(B-A)
0	$-\$ 2,000$	$-\$ 2,800$	$-\$ 800$
$1-3$	$+\$ 800$	$+\$ 1,100$	$+\$ 300$
Computed ROR	9.7%	8.7%	6.1%

The rate of return on the increment (B - A) exceeds the Minimum Attractive Rate of Return (MARR), therefore the higher cost alternative B should be selected.

Problem 7-51

Consider two mutually exclusive alternatives:

Year	\boldsymbol{X}	\boldsymbol{Y}
0	$-\$ 5000$	$-\$ 5000$
1	-3000	+2000
2	+4000	+2000
3	+4000	+2000
4	+4000	+2000

If the MARR is 8%, which alternative should be selected?

Problem 7-51

Year	X	Y	X- Y
0	-\$5,000	-\$5,000	\$0
1	-\$3,000	+\$2,000	-\$5,000
2	+\$4,000	+\$2,000	+\$2,000
3	+\$4,000	+\$2,000	+\$2,000
4	+\$4,000	+\$2,000	+\$2,000
Computed ROR	16.9\%	21.9\%	9.7\%

Since $\mathrm{X}-\mathrm{Y}$ difference between alternatives is desirable, select Alternative X.

Summary

- RoR analysis is often used but not always well understood by practitioners
- RoR can be computationally difficult manually; a spreadsheet model helps reduce solution time
- If an exact RoR is not necessary, use the PW or AW methods
- Use incremental analysis when using IRR

