# **Engineering Economics**

Rate of Return Analysis

### **Outcome of Today's Lecture**

- After completing this lecture...
- The students should be able to:
- Evaluate project cash flows with the internal rate of return measure
- Plot a project's present worth against the interest rate
- Use an incremental rate of return analysis to evaluate competing alternatives

## **Techniques for Cash Flow Analysis**

- Present Worth Analysis
- Annual Cash Flow Analysis
- Rate of Return Analysis
- Incremental Analysis
- Other Techniques:
  - Future Worth Analysis
  - Benefit-Cost Ratio Analysis
  - Payback Period Analysis

#### **Rate of Return Analysis**

- Internal Rate of Return
- Calculating Rate of Return
- Rate of Return Analysis
- Incremental Cash Flow Analysis

#### Internal Rate of Return (IRR) Lender's Viewpoint

| Year | Cash flow | 1. We know that the PW of five                                                                 |
|------|-----------|------------------------------------------------------------------------------------------------|
| 0    | -5000     | payments of \$1,252 are equivalent to<br>\$5,000 when interest rate is 8%.                     |
| 1    | +1252     |                                                                                                |
| 2    | +1252     | <ol><li>At the end of 5 years, the payments<br/>exactly repaid the \$5,000 debt with</li></ol> |
| 3    | +1252     | interest rate 8%. We say the lender                                                            |
| 4    | +1252     | received 8% rate of return.                                                                    |
| 5    | +1252     |                                                                                                |

The interest rate on the balance of a loan such that the unpaid loan balance equals zero when the final payment is made

#### **Internal Rate of Return (IRR)**

- Simple Definition:
- Given a cash flow stream, rate of return (a.k.a. IRR) is the interest rate i\* at which the benefits are equivalent to the costs:
  - ► NPW=0
  - PW of benefits PW of costs = 0
  - PW of benefits = PW of costs
  - PW of benefits / PW of costs = I
  - EUAB -EUAC = 0

#### **Internal Rate of Return (IRR)**

Suppose you have the following cash flow stream. You invest \$700, and then receive \$100, \$175, \$250, and \$325 at the end of years 1, 2, 3 and 4 respectively. What is the IRR for your investment?



- > 700 = 100/(1+i) +  $175/(1+i)^2$  +  $250/(1+i)^3$  +  $325/(1+i)^4$
- Solving for i >>> It turns out that  $i^* = 6.09 \%$

#### **Calculating Internal Rate of Return**

- Ways to find the IRR:
- I. Compound Interest Tables (you may need to use interpolation)
- > 2. Trial-and-error
- 3. Numerically (Excel's IRR function, MATLAB, or other root finding methods)
- 4. Graphically
- If you have a CFS with an investment (-P) followed by benefits (non negative) from the investment:
- The graph of NPW versus *i* will have the same general form.
- It will decrease at a decreasing rate and have a value 0 at some unique value i\*.
- Where the graph has a value 0 defines the IRR.



NPW = 
$$-700 + 100/(1+i) + 175/(1+i)^2 + 250/(1+i)^3 + 325/(1+i)^4$$



#### **Example 1: Solution Using Interest Tables**



- (P/A,i,5) = 5000/1252 = 3.993
- From Compound Interest Tables:

i=8%

| Interest rate | (P/A,i,5) |  |
|---------------|-----------|--|
| 7%            | 4.100     |  |
| 8%            | 3.993     |  |
| 9%            | 3.890     |  |

### **Example 2: Solution Using Interest Tables**

An investment resulted in the following cash flow. Compute the rate of return.

$$EUAB - EUAC = 0$$

100 + 75(A/G, i, 4) - 700(A/P, i, 4) = 0

YearCash Flow0
$$-\$700$$
1 $+100$ 2 $+175$ 3 $+250$ 4 $+325$ 

Solve the equation by trial and error

At i = 5%,



#### **Example 3: Graphical Solution**

• Given the following CFS, find i\*

| Year | Cash |
|------|------|
| 0    | -100 |
| 1    | 20   |
| 2    | 30   |
| 3    | 20   |
| 4    | 40   |
| 5    | 40   |

- PW of costs = PW of benefits
- I00=20/(I+i)+30/(I+i)<sup>2</sup>+20/(I+i)<sup>3</sup>+ 40/(I+i)<sup>4</sup>+40/(I+i)<sup>5</sup>
- NPW=-100+20/(1+i)+30/(1+i)<sup>2</sup>+ 20/(1+i)<sup>3</sup>+40/(1+i)<sup>4</sup>+40/(1+i)<sup>5</sup>





#### LHS=RHS

at 12%, RHS= 10(4.111) + 10(8.930) = 130.4at 15%, RHS= 10(3.784) + 10(7.937) = 17.2

$$i^* = 12\% + (3\%) ((130.4 - 125).(130.4 - 117.2)) = 13.23\%$$

| Year | Cash Flow |                                        |
|------|-----------|----------------------------------------|
| 0    | -\$400    | PWC=\$400                              |
| 1    | 0         | PWB = [\$200 (P/A, i%, 4) - \$50 (P/G, |
| 2    | +200      | i%, 4)] (P/F, i%, 1)                   |
| 3    | +150      |                                        |
| 4    | +100      | PWC=PWB                                |
| 5    | +50       |                                        |

• Try i = 7%

PWB=[\$200 (3.312) - \$50 (4.650)] (0.9259) = \$398.08

Solve the following cash flow for the rate of return to within an 1/2%.

| Year | Cash Flow |
|------|-----------|
| 0    | -\$500    |
| l    | -100      |
| 2    | +300      |
| 3    | +300      |
| 4    | +400      |
| 5    | +500      |

PWC=\$500 + \$100 (P/F, i%, 1)

PWB= \$300 (P/A, i%, 2) (P/F, i%, 1) + \$400 (P/F, i%, 4) + \$500 (P/F, i%, 5)

PWC-PWB=0

- Try i = 30%
- PWC=\$500 + \$100 (0.7692)= \$576.92
- PWB=\$300 (1.361) (0.7692) + \$400 (0.6501) + \$500 (0.2693)= \$588.75
- PWC-PWB = 11.83
- Try i = 35%
- PWC=\$500 + \$100 (0.7407)= \$574.07
- PVVB=\$300 (1.289) (0.7407) + \$400 (0.3011) + \$500 (0.2230) = \$518.37
- ▶ PWC-PWB= 55.70
- Rate of Return, i\* = 30% + (5%) [11.83/55.70) = 31.06%
- Exact Answer: 30.81%

### **Rate of Return (RoR) Analysis**

- Example statements about a project:
  - The net present worth of the project is \$32,000
  - The equivalent uniform annual benefit is \$2,800
  - ▶ The project will produce a 23% rate of return
- > The third statement is perhaps most widely understood.
- Rate of return analysis is probably the most frequently used analysis technique in industry.
- Its major advantage is that it provides a figure of merit that is readily understood.

- Rate of return analysis has another advantage: With NPW or EUAB one must choose an interest rate for using in the calculations.
- This choice may possibly be difficult or controversial.
- With RoR analysis no (exterior) interest rate is introduced into the calculations.
- Instead, we compute a RoR from the CFS.
- Warning: Relying only on RoR is not always a good idea.

### **Rate of Return (RoR) Analysis**

- Example: Which of the following two investment options would you select?
- Option I:
- Invest \$2,000 today. At the end of years 1, 2, and 3 get \$100, \$100, and \$500 profit; at the end of year 4, you get \$2,200.
- <u>Option 2:</u>
- Invest \$2,000 today. At the end of years 1, 2, and 3 get \$100, \$100, and \$100 profit; at the end of year 4, you get \$2,000.

### **Rate of Return (RoR) Analysis**

- Find out the implicit interest rate you would be receiving; that is, solve for the interest rate in which the PW of benefits are equal to your payments \$2,000.
- Option I:
- >  $2000 = 100/(1+i)^{1} + 100/(1+i)^{2} + 500/(1+i)^{3} + 2200/(1+i)^{4}$
- ▶ IRR: i= 10.78%
- Option 2:
- >  $2000 = 100/(1+i)^{1} + 100/(1+i)^{2} + 100/(1+i)^{3} + 2000/(1+i)^{4}$
- ▶ IRR: i= 3.82%

Which deal would you prefer?

**The Minimum Attractive Rate of Return (MARR)** 

- The MARR is a minimum return the company will accept on the money it invests
- The MARR is usually calculated by financial analysts in the company and provided to those who evaluate projects
- It is the same as the interest rate used for Present Worth and Annual Worth analysis.

#### **Incremental Cash Flow Analysis (\DeltaCFS)**

- Suppose you must choose between projects A or B.
- We can rewrite the CFS for B as B = A + (B A).
- In this representation B has two CFS components:
  - I. the same CFS as A, and
  - ▶ 2. the incremental component (B –A).
- B is preferred to A when the IRR on the difference (B–A) exceeds the MARR.
- Thus, to choose one between B and A, IRR analysis is done by computing the IRR on the incremental investment (B-A) between the projects.

### **Incremental Cash Flow Analysis (\DeltaCFS)**

- Steps to conduct  $\Delta$ CFS on two CFS's:
- I. Number them CFSI and CFS2, with CFS1 having the largest initial (year 0) cost (in absolute value)
- > 2. Compute  $\triangle CFS = CFSI CFS2$  (It's year 0 entry must be negative)
- 3. Find the IRR for  $\Delta$ CFS, say  $\Delta$ IRR
- ▶ 4. If  $\Delta$ IRR ≥ MARR, choose CFS1; if not, choose CFS2
- Example: There are two cash flows: (-20,28) and (-10,15) and MARR = 6%.
  - ► I.CFSI = (-20,28), CFS2= (-10,15)
  - ▶  $2. \Delta CFS = CFSI CFS2 = (-10, 13)$
  - ▶ 3. ∆IRR = 30%.
  - 4.  $\Delta$ IRR > MARR => we choose CFSI = (-20,28)

### **Incremental Cash Flow Analysis (\DeltaCFS)**

- In summary, we compute the CFS for the difference between the projects by subtracting the cash flow for the lower investment-cost project (A) from that of the higher investment-cost project (B).
- > Then, the decision rule is as follows:
  - ► IF  $\Delta$ IRR<sub>B-A</sub> > MARR, select B
  - IF  $\Delta$ IRR<sub>B-A</sub> = MARR, select either A or B
  - IF  $\triangle$ IRR<sub>B-A</sub> < MARR, select A
  - Here, B-A is an investment increment.

### Why We Use $\Delta$ IRR in IRR analysis?

| Years<br>0<br>1 | -10  | B<br>-20<br>28 | B-A<br>-10<br>13 | MARR=6%                             |
|-----------------|------|----------------|------------------|-------------------------------------|
| IRR             | 50%  | 40%            |                  | Select A                            |
|                 | B-A  |                | 30%              | MARR < ΔIRR <sub>B-A</sub> Select B |
| NPV             | 3.92 | 6.05           |                  | Select B                            |

- Although the rate of return of A is higher than B, B got \$8 return from the \$20 investment and A only got \$5 return from \$10 investment.
- Project B: you put \$20 in project B to get a return \$8.
- Project A: you put \$10 in project A (and \$10 in your pocket) to get a return \$5.
- From this example, we know that we can't evaluate two projects by comparing the IRRs of the projects. Instead, we use  $\Delta$ IRR and MARR to make the decision.

Two alternatives are as follows:

 $\sim$ 

| Year | A       | В       |
|------|---------|---------|
| 0    | -\$2000 | -\$2800 |
| 1    | +800    | +1100   |
| 2    | +800    | +1100   |
| 3    | +800    | +1100   |

\_ \_ \_ \_ \_ \_

If 5% is considered the minimum attractive rate of return, which alternative should be selected?

| Year         | A        | В        | (B- A) |
|--------------|----------|----------|--------|
| 0            | -\$2,000 | -\$2,800 | -\$800 |
| 1-3          | +\$800   | +\$1,100 | +\$300 |
| Computed ROR | 9.7%     | 8.7%     | 6.1%   |

The rate of return on the increment (B - A) exceeds the Minimum Attractive Rate of Return (MARR), therefore the higher cost alternative B should be selected.

Consider two mutually exclusive alternatives:

\_ \_ \_ \_ \_ \_ \_

| Year | X       | Y       |
|------|---------|---------|
| 0    | -\$5000 | -\$5000 |
| 1    | -3000   | +2000   |
| 2    | +4000   | +2000   |
| 3    | +4000   | +2000   |
| 4    | +4000   | +2000   |

If the MARR is 8%, which alternative should be selected?

| Year         | Х        | Y        | X- Y     |
|--------------|----------|----------|----------|
| 0            | -\$5,000 | -\$5,000 | \$0      |
| 1            | -\$3,000 | +\$2,000 | -\$5,000 |
| 2            | +\$4,000 | +\$2,000 | +\$2,000 |
| 3            | +\$4,000 | +\$2,000 | +\$2,000 |
| 4            | +\$4,000 | +\$2,000 | +\$2,000 |
| Computed ROR | 16.9%    | 21.9%    | 9.7%     |

Since X-Y difference between alternatives is desirable, select Alternative X.

#### **Summary**

- RoR analysis is often used but not always well understood by practitioners
- RoR can be computationally difficult manually; a spreadsheet model helps reduce solution time
- If an exact RoR is not necessary, use the PW or AW methods
- Use incremental analysis when using IRR