SEVENTH EDITION

ENGINEERING ECONOMY

Leland Blank • Anthony Tarquin

Chapter 8

Breakeven and Payback Analysis

Lecture slides to accompany

Engineering Economy
$7^{\text {th }}$ edition

Leland Blank
Anthony Tarquin

Mc
 Graw Hiw

LEARNING OUTCOMES

1. Breakeven point - one parameter
2. Breakeven point - two alternatives
3. Payback period analysis

BREAKEVEN POINT

Value of a parameter that makes two elements equal

The parameter (or variable) can be an amount of revenue, cost, supply, demand, etc. for one project or between two alternatives
\square One project - Breakeven point is identified as $Q_{B E}$. Determined using linear or non-linear math relations for revenue and cost
-Between two alternatives - Determine one of the parameters $\mathrm{P}, \mathrm{A}, \mathrm{F}, \mathrm{i}$, or n with others constant

Solution is by one of three methods:
$>$ Direct solution of relations
$>$ Trial and error
$>$ Spreadsheet functions or tools (Goal Seek or Solver)

COST-REVENUE MODEL — ONE PROJECT

Quantity, Q - An amount of the variable in question, e.g., units/year, hours/month

Breakeven value is $Q_{B E}$

Fixed cost, FC - Costs not directly dependent on the variable, e.g., buildings, fixed overhead, insurance, minimum workforce cost Variable cost, VC - Costs that change with parameters such as production level and workforce size. These are labor, material and marketing costs. Variable cost per unit is v
Total cost, TC - Sum of fixed and variable costs, TC = FC + VC

Revenue, R - Amount is

 dependent on quantity soldRevenue per unit is r
Profit, P — Amount of
revenue remaining after costs

$$
P=R-T C=R-(F C+V C)
$$

BREAKEVEN FOR LINEAR R AND TC

Set $R=T C$ and solve for $Q=$ Q_{BE}

$$
\begin{gathered}
R=T C \\
r Q=F C+v Q \\
Q_{B E}=\frac{F C}{r-v}
\end{gathered}
$$

When variable cost, v, is lowered, Q_{BE} decreases
 (moves to left)

EXAMPLE 1: ONE PROJECT BREAKEVEN POINT

A plant produces 15,000 units/month. Find breakeven level if FC $=\$ 75,000 /$ month, revenue is $\$ 8 /$ unit and variable cost is $\$ 2.50$ unit. Determine expected monthly profit or loss.

Solution: Find Q_{BE} and compare to 15,000; calculate Profit

$$
\mathrm{Q}_{\mathrm{BE}}=75,000 /(8.00-2.50)=13,636 \text { units/month }
$$

Production level is above breakeven \quad rofit

$$
\begin{aligned}
& \text { Profit }=R-(F C+V C) \\
& \begin{aligned}
=r Q-(F C & +v Q)=(r-v) Q-F C \\
& =(8.00-2.50)(15,000)-75,000 \\
& =\$ 7500 / \text { month }
\end{aligned}
\end{aligned}
$$

EXAMPLE 2

Indira Industries is a major producer of diverter dampers used in the gas turbine power industry to divert gas exhausts from the turbine to a side stack, thus reducing the noise to acceptable levels for human environments. Normal production level is 60 diverter systems per month, but due to significantly improved economic conditions in Asia, production is at 72 per month. The following information is available.

Fixed costs

$$
\text { FC = } \$ 2.4 \text { million per month }
$$

Variable cost per unit

$$
v=\$ 35,000
$$

- Revenue per unit

$$
r=\$ 75,000
$$

(a) What is the current profit level per month for the facility?
(c) What is the revenue per unit cost per damper that is necessary if the production level significantly reduced to 45 units. Note : the fixed costs is remaining constant.

BREAKEVEN BETWEEN TWO ALTERNATIVES

To determine value of common variable between 2 alternatives, do the following:

1. Define the common variable
2. Develop equivalence PW, AW or FW relations as function of common variable for each alternative
3. Equate the relations; solve for variable. This is breakeven value

EXAMPLE TWO ALTERNATIVE BREAKEVEN ANALYSIS

Perform a make/buy analysis where the common variable is X, the number of units produced each year. AW relations are:

```
\(A W_{\text {make }}=-18,000(A / P, 15 \%, 6)\)
    +2,000(A/F,15\%,6) - 0.4X
```


$A W_{\text {buy }}=-1.5 X$

Solution: Equate AW relations, solve for X

$$
\begin{aligned}
-1.5 X & =-4528-0.4 X \\
X & =4116 \text { per year }
\end{aligned}
$$

If anticipated production > 4116, select make alternative (lower variable cost)

EXAMPLE 3: MAKE OR BUY

Guardian is a national manufacturing company of home health care appliances. It is faced with a make-or-buy decision. A newly engineered lift can be installed in a car trunk to raise and lower a wheelchair. The steel arm of the lift can be purchased internationally for $\$ 3.50$ per unit or made in-house. If manufactured on site, two machines will be required. Machine A is estimated to cost $\$ 18,000$, have a life of 6 years, and have a $\$ 2000$ salvage value; machine B will cost $\$ 12,000$, have a life of 4 years, and have a $\$ 500$ salvage value (carry-away cost). Ma- chine A will require an overhaul after 3 years costing $\$ 3000$. The annual operating cost for machine A is expected to be $\$ 6000$ per year and for machine B is $\$ 5000$ per year. A total of four operators will be required for the two machines at a rate of $\$ 12.50$ per hour per operator. In a normal 8-hour period, the operators and two machines can produce parts sufficient to manufacture 1000 units. Use a MARR of 15\% per year to determine the following.
(a) Number of units to manufacture each year to justify the in-house (make) option.
(b) The maximum capital expense justifiable to purchase machine A, assuming all other estimates for machines A and B are as stated. The company expects to produce 10,000 units per year.
a) Use steps $\mathbf{1}$ to $\mathbf{3}$ stated previously to determine the breakeven point.
1.Define x as the number of lifts produced per year.
2. There are variable costs for the operators and fixed costs for the two machines for the make option.

Annual VC=cost per unit x unit per year
$=\underbrace{1000 \text { units }}_{\text {hour }} \times \quad(8$ hours $) x$

The annual fixed costs for machines A and B are the AW amounts.

```
AW =18,000(A P,15%,6) + 2000(A F,15%,6) - 6000-3000(P F,15%,3)(A P,15%,6)
AW B}=-12,000(A P,15%,4)-500(A F,15%,4)-5000
```

Total cost is the sum of $\mathrm{AW}_{\mathrm{A}}, \mathrm{AW}_{\mathrm{B}}$, and VC.
3. Equating the annual costs of the buy option (3.50x) and the make option yields

```
- \(3.50 x=\mathrm{AW}_{\mathrm{A}}+\mathrm{AW}_{\mathrm{B}}-\mathrm{VC}\)
    \(=18,000(A P, 15 \%, 6)+2000(A F, 15 \%, 6)-6000-3000(P F, 15 \%, 3)(A P, 15 \%, 6)-12,000(A P, 15 \%, 4)-500(A F, 15 \%, 4)-5000-0.4 x\)
    \(-3.10 x=-20,352\)
        \(x=6565\) units per year
```

b) Substitute 10,000 for x and PA for the to-be-determined first cost of machine A (currently $\$ 18,000$) in Equation [13.5]. Solution yields PA $\$ 58,295$. This is approximately three times the estimated first cost of $\$ 18,000$, because the production of 10,000 per year is considerably larger than the breakeven amount of 6565.

BREAKEVEN ANALYSIS USING GOAL SEEKTOOL

Spreadsheet tool Goal Seek finds breakeven value for the common variable between two alternatives

Problem: Two machines (1 and 2) have following estimates.
a) Use spreadsheet and AW analysis to select one at MARR = 10\%.
b) Use Goal Seek to find the breakeven first cost.

Machine	1	2
P, \$	$-80,000$	$-110,000$
NCF, \$/year	25,000	22,000
S, \$	2,000	3,000
n, years	4	6

[^0]| 1 | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| 1 | MARR = | 10\% | | |
| 2 | | Net cash flo | ws, \$/year | |
| 3 | Year | Machine 1 | Machine 2 | |
| 4 | 0 | -80,000 | -110,000 | |
| 5 | 1 | 25,000 | 22,000 | |
| 6 | 2 | 25,000 | 22,000 | |
| 7 | 3 | 25,000 | 22,000 | |
| 8 | 4 | 27,000 | 22,000 | |
| 9 | 5 | | 22,000 | |
| 10 | 6 | | 25,000 | |
| 11 | AW @ MARR | 193 | -2,868 | |
| 12 | | \uparrow | | |
| 13 14 | $=-\mathrm{PMT}(\$ \mathrm{~B} \$ 1,4, \mathrm{NPV}(\$ \mathrm{~B} 1, \mathrm{~B} 5: \mathrm{B} 8)+\mathrm{B} 4)$ | | | |

BREAKEVEN ANALYSIS USING GOAL SEEK TOOL

Solution: b) Goal Seek finds a first-cost breakeven of \$96,669 to

 make machine B economically equivalent to A

PAYBACK PERIOD ANALYSIS

Paylorack peniod. Estimated amount of time (n_{p}) for cash inflows to recover an
 initial investment (P) plus a stated return of return

(i\%)
Types of payback analysis: No-return and discounted payback

1. No-return payback means rate of return is ZERO (i= 0\%)
2. Discounted payback considers time value of money (i $>0 \%)$

Caution: Payback period analysis is a good initial screening tool, rather than the primary method to justify a project or select an alternative (Discussed later)

PAYBACK PERIOD COMPUTATION

Formula to determine payback period (n_{p}) varies with type of analysis.

NCF = Net Cash Flow per period t

No return, $i=0 \% ; \mathrm{NCF}_{t}$ varies annually:
No return, $i=0 \%$; annual uniform NCF:

Discounted, $i>0 \% ; \mathrm{NCF}_{t}$ varies annually:

$$
\text { Discounted, } i>0 \% \text {; annual uniform NCF: }
$$

$$
\begin{aligned}
& 0=-P+\sum_{t=1}^{t=n_{p}} \mathrm{NCF}_{t} \\
& n_{p}=\frac{P}{\mathrm{NCF}} \\
& 0=-P+\sum_{t=1}^{t=n_{p}} \mathrm{NCF}_{t}(P / F, i, t) \\
& 0=-P+\operatorname{NCF}\left(P / A, i, n_{p}\right)
\end{aligned}
$$

Eqn. 1

Eqn. 2

Eqn. 3

Eqn. 4

- No-return payback neglects time value of money, so no return is expected for the investment made
- No cash flows after the payback period are considered in the analysis. Return may be higher if these cash flows are expected to be positive.
-Approach of payback analysis is different from PW, AW, ROR and B/C analysis. A different alternative may be selected using payback.
-Rely on payback as a supplemental tool; use PW or AW at the MARR for a reliable decision
-Discounted payback ($\mathrm{i}>\mathbf{0 \%}$) gives a good sense of the risk involved

EXAMPLE: PAYBACK ANALYSIS

System 1 System 2

First cost, \$ 12,000 8,000 NCF, \$ per year $\quad 3,000$ 1,000 (year 1-5)

3,000
(year 6-14)
Maximum life, years 74
Problem: Use (a) no-return payback, (b) discounted payback at 15%, and (c) PW analysis at 15% to select a system.
Comment on the results.

Solution: (a) Use Eqns. 1 and 2

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{p} 1}=12,000 / 3,000=4 \text { years } \\
& \mathrm{n}_{\mathrm{p} 2}=3-8,000+5(1,000)+1(3,000)=
\end{aligned}
$$

(CONTINUED)

System 1
First cost, \$ NCF, \$ per year

Maximum life, years

12,000 3,000

7 System 2

```
8,000
1,000 (year 1-5)
3,000 (year 6-14)
    1 4
```

Solution: (b) Use Eqns. 3 and 4
System 1: $\quad 0=-12,000+3,000\left(P / A, 15 \%, n_{p 1}\right)$ $n_{p 1}=6.6$ years

System 2: $\quad 0=-8,000+1,000(\mathrm{P} / \mathrm{A}, 15 \%, 5)$
$+3,000\left(P / A, 15 \%, n_{p 2}-5\right)(P / F, 15 \%, 5)$
$n_{p 1}=9.5$ years
Select system 1
(c) Find PW over LCM of 14 years

$$
\begin{aligned}
& \mathrm{PW}_{1}=\$ 663 \\
& \mathrm{PW}_{2}=\$ 2470
\end{aligned}
$$

Select system 2
Comment: PW method considers cash flows after payback period.

SUMMARY OF IMPORTANT POINTS

Breakeven amount is a point of indifference to accept or reject a project

One project breakeven: accept if quantity is $>Q_{B E}$
Two alternative breakeven: if level > breakeven, select lower variable cost alternative (smaller slope)

Payback estimates time to recover investment. Return can be $\mathbf{i}=0 \%$ or $\mathbf{i}>0 \%$

Use payback as supplemental to PW or other analyses, because \mathbf{n}_{p} neglects cash flows after payback, and if $i=0 \%$, it neglects time value of money
Payback is useful to sense the economic risk in a project

[^0]: Solution: a) Select machine A with AW $_{\mathrm{A}}=\$ 193$

