EQUILIBRIUM OF A PARTICLE, THE FREE-BODY DIAGRAM \& COPLANAR FORCE SYSTEMS

Today's Objectives:

Students will be able to :
a) Draw a free body diagram (FBD), and,
b) Apply equations of equilibrium to solve a 2-D problem.

In-Class Activities:

- Reading Quiz
- Applications
- What, Why and How of a FBD
- Equations of Equilibrium
- Analysis of Spring and Pulleys
- Example Problems
- Concept Quiz
- Group Problem Solving
- Attention Quiz

READING QUIZ

1) When a particle is in equilibrium, the sum of forces acting on it equals \qquad . (Choose the most appropriate answer)
A) A constant
B) A positive number
C) Zero
D) A negative number
E) An integer
2) For a frictionless pulley and cable, tensions in the cable (T_{1} and T_{2}) are related as \qquad .
A) $T_{1}>T_{2}$
B) $\mathrm{T}_{1}=\mathrm{T}_{2}$
C) $\mathrm{T}_{1}<\mathrm{T}_{2}$
D) $\mathrm{T}_{1}=\mathrm{T}_{2} \sin \theta$

Cable is in tension

APPLICATIONS

The crane is lifting a load. To decide if the straps holding the load to the crane hook will fail, you need to know forces in the straps. How could you find those forces?

APPLICATIONS (continued)

For a spool of given weight, how would you find the forces in cables AB and AC ? If designing a spreader bar like the one being used here, you need to know the forces to make sure the rigging doesn't fail.

APPLICATIONS (continued)

For a given force exerted on the boat's towing pendant, what are the forces in the bridle cables? What size of cable must you use?

COPLANAR FORCE SYSTEMS (Section 3.3)

This is an example of a 2-D or coplanar force system.

If the whole assembly is in equilibrium, then particle A is also in equilibrium.

To determine the tensions in the cables for a given weight of cylinder, you need to learn how to draw a free-body diagram and apply the equations of equilibrium.

THE WHAT, WHY AND HOW OF A FREE BODY DIAGRAM (FBD)

Free-body diagrams are one of the most important things for you to know how to draw and use for statics and other subjects!

What? - It is a drawing that shows all external forces acting on the particle.

Why? - It is key to being able to write the equations of equilibrium - which are used to solve for the unknowns (usually forces or angles).

How?

1. Imagine the particle to be isolated or cut free from its surroundings.
2. Show all the forces that act on the particle. Active forces: They want to move the particle. Reactive forces: They tend to resist the motion.
3. Identify each force and show all known magnitudes and directions. Show all unknown magnitudes and / or directions as variables.

Note : Cylinder mass $=40 \mathrm{Kg}$

EQUATIONS OF 2-D EQUILIBRIUM

Since particle A is in equilibrium, the net force at A is zero.

$$
\begin{aligned}
& \text { So } \boldsymbol{F}_{B}+\boldsymbol{F}_{C}+\boldsymbol{F}_{D}=0 \\
& \text { or } \Sigma \boldsymbol{F}=0
\end{aligned}
$$

In general, for a particle in equilibrium,

$$
\begin{aligned}
& \sum \boldsymbol{F}=0 \text { or } \\
& \sum \mathrm{F}_{\mathrm{x}} \boldsymbol{i}+\sum \mathrm{F}_{\mathrm{y}} \boldsymbol{j}=0=0 i+0 j \quad \text { (a vector equation) }
\end{aligned}
$$

Or, written in a scalar form,
$\Sigma \mathrm{F}_{\mathrm{x}}=0$ and $\Sigma \mathrm{F}_{\mathrm{y}}=0$
These are two scalar equations of equilibrium (E-of-E).
They can be used to solve for up to two unknowns.

EQUATIONS OF 2-D EQUILIBRIUM (continued)

Note : Cylinder mass $=40 \mathrm{Kg}$
Write the scalar E-of-E:

$$
\begin{aligned}
& +\rightarrow \Sigma \mathrm{F}_{\mathrm{x}}=\mathrm{F}_{\mathrm{B}} \cos 30^{\circ}-\mathrm{F}_{\mathrm{D}}=0 \\
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=\mathrm{F}_{\mathrm{B}} \sin 30^{\circ}-392.4 \mathrm{~N}=0
\end{aligned}
$$

Solving the second equation gives: $\underline{\mathrm{F}}_{\underline{B}}=785 \mathrm{~N} \rightarrow$
From the first equation, we get: $\underline{F}_{D}=680 \mathrm{~N} \leftarrow$

SIMPLE SPRINGS

> Spring Force $=$ spring constant $*$ deformation of spring or $\quad \mathrm{F}=\mathrm{k} * \mathrm{~s}$

CABLES AND PULLEYS

With a frictionless pulley and cable

$$
\mathrm{T}_{1}=\mathrm{T}_{2} .
$$

Cable can support only a tension or "pulling" force, and this force always acts in the direction of the cable.
Cable is in tension

SMOOTH CONTACT

> If an object rests on a smooth surface, then the surface will exert a force on the object that is normal to the surface at the point of contact.

In addition to this normal force \mathbf{N}, the cylinder is also subjected to its weight \mathbf{W} and the force \mathbf{T} of the cord.

Since these three forces are concurrent at the center of the cylinder, we can apply the equation of equilibrium to this "particle," which is the same as applying it to the cylinder.

EXAMPLE I

Given: The box weighs 550 N and geometry is as shown.
 Find: The forces in the ropes AB and AC.

Plan:

1. Draw a FBD for point A .
2. Apply the E-of-E to solve for the forces in ropes AB and AC.

EXAMPLE I (continued)

FBD at point A

Applying the scalar E-of-E at A, we get;
$+\rightarrow \sum \mathrm{F}_{\mathrm{x}}=-\mathrm{F}_{\mathrm{B}} \cos 30^{\circ}+\mathrm{F}_{\mathrm{C}}(4 / 5)=0$
$+\uparrow \sum \mathrm{F}_{\mathrm{y}}=\mathrm{F}_{\mathrm{B}} \sin 30^{\circ}+\mathrm{F}_{\mathrm{C}}(3 / 5)-550 \mathrm{~N}=0$
Solving the above equations, we get;

$$
\underline{\mathrm{F}}_{\underline{B}}=478 \mathrm{~N} \pi \text { and } \underline{\mathrm{F}}_{\underline{C}}=518 \mathrm{~N}
$$

EXAMPLE II

Given: The mass of cylinder C is 40 kg and geometry is as shown.

Find: The tensions in cables DE, EA, and EB.

Plan:

1. Draw a FBD for point E.
2. Apply the E-of-E to solve for the forces in cables DE, EA, and EB.

EXAMPLE II (continued)

FBD at point E

Applying the scalar E-of-E at E, we get;
$+\rightarrow \sum \mathrm{F}_{\mathrm{x}}=-\mathrm{T}_{\mathrm{ED}}+\left(40^{*} 9.81\right) \cos 30^{\circ}=0$
$+\uparrow \sum \mathrm{F}_{\mathrm{y}}=\left(40^{*} 9.81\right) \sin 30^{\circ}-\mathrm{T}_{\mathrm{EA}}=0$
Solving the above equations, we get;

$$
\underline{\mathrm{T}}_{\underline{\mathrm{ED}}}=340 \mathrm{~N} \leftarrow \quad \text { and } \quad \underline{\mathrm{T}}_{\underline{\mathrm{EA}}}=196 \mathrm{~N} \downarrow
$$

CONCEPT QUIZ

 (A)

(B)

1000 N
(C)

1) Assuming you know the geometry of the ropes, in which system above can you NOT determine forces in the cables?
2) Why?
A) The weight is too heavy.
B) The cables are too thin.
C) There are more unknowns than equations.
D) There are too few cables for a 1000 N weight.

GROUP PROBLEM SOLVING

Given: The mass of lamp is 20 kg and geometry is as shown.

Find: The force in each cable.

Plan:

1. Draw a FBD for Point D.
2. Apply E-of-E at Point D to solve for the unknowns (F_{CD} \& F_{DE}).
3. Knowing F_{CD}, repeat this process at point C .

GROUP PROBLEM SOLVING (continued)

FBD at point D

Applying the scalar E-of-E at D, we get;
$+\uparrow \sum \mathrm{F}_{\mathrm{y}}=\mathrm{F}_{\mathrm{DE}} \sin 30^{\circ}-20(9.81)=0$
$+\rightarrow \mathrm{F}_{\mathrm{x}}=\mathrm{F}_{\mathrm{DE}} \cos 30^{\circ}-\mathrm{F}_{\mathrm{CD}}=0$
Solving the above equations, we get:

$$
\underline{\mathrm{F}}_{\mathrm{DE}}=392 \mathrm{~N} \nearrow \text { and } \underline{\mathrm{F}}_{\mathrm{CD}}=340 \mathrm{~N} \leftarrow
$$

GROUP PROBLEM SOLVING (continued)

FBD at point C

Applying the scalar E-of-E at C, we get;
$+\rightarrow \sum \mathrm{F}_{\mathrm{x}}=340-\mathrm{F}_{\mathrm{BC}} \sin 45^{\circ}-\mathrm{F}_{\mathrm{AC}}(3 / 5)=0$
$+\uparrow \sum \mathrm{F}_{\mathrm{y}}=\mathrm{F}_{\mathrm{AC}}(4 / 5)-\mathrm{F}_{\mathrm{BC}} \cos 45^{\circ}=0$
Solving the above equations, we get;

$$
\underline{\mathrm{F}}_{\mathrm{BC}}=275 \mathrm{~N} \swarrow \quad \text { and } \quad \underline{\mathrm{F}}_{\mathrm{AC}}=243 \mathrm{~N} \nwarrow
$$

ATTENTION QUIZ

1. Select the correct FBD of particle A.

ATTENTION QUIZ

2. Using this FBD of Point C , the sum of forces in the x-direction $\left(\Sigma F_{X}\right)$ is \qquad .

Use a sign convention of $+\rightarrow$.
A) $\mathrm{F}_{2} \sin 50^{\circ}-20=0$

B) $\mathrm{F}_{2} \cos 50^{\circ}-20=0$
C) $\mathrm{F}_{2} \sin 50^{\circ}-\mathrm{F}_{1}=0$
D) $\mathrm{F}_{2} \cos 50^{\circ}+20=0$

sud of the Lecturne

Vet Learning Continue

