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Abstract. The exterior degree d∧(G) of a finite group G has been recently
introduced by Rezaei and Niroomand in order to study the probability that

two given elements x and y of G commute in the nonabelian exterior square

G ∧ G. This notion is related with the probability d(G) that two elements of
G commute in the usual sense. Motivated by a paper of Erovenko and Sury of

2008, we compute the exterior degree of a group which is the wreath product

of two finite abelian p–groups (p prime). We find some numerical inequalities
and study mostly abelian p-groups.

1. Introduction

The present paper deals only with finite groups. A consistent body of scien-
tific results is devoted to study the combinatorial conditions which influence the
structure of finite groups in [1, 4, 5, 6, 17]. Denoting with k(G) the number of
the G–conjugacy classes [x]G = {xg | g ∈ G} of a group G and with CG(x) the
centralizer of x in G, it is shown in [1, 4, 5, 6, 17] that the commutativity degree

d(G) =
|{(x, y) ∈ G×G | [x, y] = 1}|

|G|2
=

1
|G|2

∑
x∈G

|CG(x)| = k(G)
|G|

allows us to classify large classes of groups only looking at their numerical value
of d(G). The intriguing idea, which is behind most of the proofs of [1, 3, 4], is
that d(G) measures the distance of G from being abelian and so we may apply
different techniques of combinatorial nature. We inform the reader that there are
some recent contributions in [12, 19] which study the recognition of the structure
of a group from inequalities of numerical nature. This approach might be useful to
compare with our techniques of investigation.

Going back to illustrate our scopes, we mention that several authors call d(G)
the probability of commuting pairs of G. In fact, {(x, y) ∈ G×G | [x, y] = 1} can be
regarded as a measurable subset of G2 (with respect to the discrete measure over
G2) and d(G) is defined exactly as a probability measure. Of course, d(G) = 1 if
and only if G is abelian. As one may expect, d(G) is an invariant, but it is not only
invariant under isomorphisms of groups, but also under various generalizations, for
instance the isoclinisms (see [5, 17]).

On the other hand, there is a recent interest in algebraic topology and in group
theory in the study of the nonabelian exterior square G ∧ G of G: we recall that
G ∧G is the group generated by the symbols g ∧ h and by the relations gg′ ∧ h =
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((g′)g ∧hg) (g∧h), g∧hh′ = (g∧h) (gh∧ (h′)h) and g∧g = 1 for all g, g′, h, h′ ∈ G,
where G acts on itself by conjugation via (g′)g = g−1g′g.

A recent number of papers is in fact devoted to investigate a more specific in-
variant, which allows us to measure how far is G from being an abelian group of
a prescribed type, for instance, elementary abelian of given rank. Niroomand and
Rezaei [14] introduced the exterior degree of G

d∧(G) =
|{(x, y) ∈ G×G | x ∧ y = 1

G∧G
}|

|G|2
=

1
|G|

k(G)∑
i=1

|C∧
G(xi)|

|CG(xi)|
,

where the last equality is precisely [14, Lemma 2.2]. The set

C∧
G(x) = {a ∈ G | a ∧ x = 1

G∧G
}

is called exterior centralizer of x in G and turns out to be a subgroup of G (see
[13]) contained in CG(x). The exterior center of G is the set

Z∧(G) = {g ∈ G | 1
G∧G

= g ∧ y ∈ G ∧G,∀y ∈ G} =
⋂

x∈G

C∧
G(x)

which is a subgroup of the center Z(G) of G (see [13, 14, 15]). Originally, C∧
G(x)

and Z∧(G) have been introduced for the study of properties of G ∧ G and this
justifies the use of these subgroups in our perspective of research.

H2(G, Z) = M(G) denotes the second homology group of G with integral coef-
ficients (also called Schur multiplier of G, see [11]) and plays a fundamental role
in the study of the exterior degree, as noted in [14, 15, 16]. There is a classical re-
sult in [11], known as Poincaré Duality, which shows H2(G, Z) ' H2(G, C∗). This
means that the second homology group with coefficients in Z is isomorphic with
the second cohomology group with coefficients in C∗ and, in principle, we may use
indipendently H2(G, Z) or H2(G, Z) for denoting the Schur multiplier. We prefer
to use H2(G, Z) = M(G), following [13, 14, 15, 16].

Very briefly, we mention that the interest for C∧
G(x) and Z∧(G) is due to the fact

that they allow us to decide whether G is a capable group or not, that is, whether
G is isomorphic to E/Z(E) for some group E or not. Beyl and others [2] illustrate
that capable groups are well–known and subject to interesting classifications.

We noted that it is not available a precise computation of the exterior degree
of wreath products of abelian groups as in [7], even if some general bounds are
known by [14, 15, 16]. The present paper has been written to cover this aspect of
the literature. Since the dihedral group D8 of order 8 is isomorphic to the wreath
product C2 o C2 of two copies of the cyclic group C2 of order 2, we have precise
values for d∧(D8) already in [14, 15] and several other extraspecial p–groups (p any
prime) can be constructed directly as wreath products of cyclic p–groups (see [10]).
In fact we confirm not only the main results of [16], but provide new formulas for
the exterior degree of wreath products of cyclic p–groups.

2. Preliminaries

Let L and H be groups and Ω a set with H acting on it. Let K be the direct
product K =

∏
ω∈Ω Lω of copies of Lω = L indexed by the set Ω. The elements

of K can be seen as arbitrary sequences (lω) of elements of L indexed by Ω with
componentwise multiplication. Then the action of H on Ω extends in a natural way
to an action of H on the group K by h(lω) = (lh−1ω). In this way, we have defined
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the group L oΩ H, wreath product of L by H with respect to Ω. The subgroup K of
L oΩ H is called base. Since H acts in a natural way on itself by left multiplication
(notion of left Cayley action), we can choose Ω = H. In this case, we write briefly
L oH, omitting Ω, and the wreath product turns out to be the semidirect product
H n K, that is, L oH = H n K. We will consider only this type of wreath product,
also called standard wreath product. More specifically, we will focus on two abelian
groups A and B and on A o B, considering the left Cayley action as just said. We
will have

A oB = B n A×A× . . .×A︸ ︷︷ ︸
|B|−times

= B n A|B|,

that is, the semidirect product of B by |B|–copies of A (see [11, Chapter 6] or [10]).
Several examples, which motivated our investigations, are listed below.

Example 2.1. The symmetric group

S3 = 〈x, y | x2 = y3 = 1, x−1yx = y−1〉 = 〈x〉n 〈y〉 ' C2 n A3 ' C2 n C3

on 3 letters is isomorphic to the dihedral group D6 of order 6, where A3 ' C3

denotes the alternating group on 3 elements. It is easy to check that Z(S3) =
Z∧(S3) = 1, CS3(A3) = A3 and CS3(〈x〉) = 〈x〉. More generally, the dihedral
group of order 2q is

D2q = 〈x, y | x2 = yq = 1, x−1yx = y−1〉 ' C2 n Cq

(see [10]) and, in case q ≥ 3 is an odd prime, it is possible to extend our consider-
ations, up to isomorphisms, to all dihedral groups D2q. We find again CD2q

(Cq) =
Cq, CD2q (〈x〉) = 〈x〉 and Z(D2q) = Z∧(D2q) = 1.

One of the key results in [14, 15] is the following bound, which restricts the
values of the exterior degree by two functions depending on the size of the Schur
multiplier.

Theorem 2.2 (See [14], Theorem 2.3). Let G be a group. Then

d(G)
|M(G)|

+
|Z∧(G)|
|G|

(
1− 1

|M(G)|

)
≤ d∧(G) ≤ d(G)−

(
p− 1

p

)(
|Z(G)| − |Z∧(G)|

|G|

)
where p is the smallest prime number dividing the order of G.

Since capable groups are characterized to have trivial exterior center (see [2, 11]),
the following consequences are clear.

Corollary 2.3 (See [14], Corollary 2.5). Let G be a group. Then d∧(G) ≤ d(G).
Moreover, if G is capable, then 1

|G| ≤ d∧(G) ≤ d(G).

There are a series of informations which can be found in [11] about M(A o B)
that we list in the next lines. Given an arbitrary abelian group A,

A ] A =
A⊗A

U(A)
, where U(A) = 〈a⊗ b + b⊗ a | a, b ∈ A〉

and
Inv(A) = {a ∈ A | a2 = 1}.

The structure of A ] A is described by the following result.
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Theorem 2.4 (See [11], Lemma 6.3.4). Let A = Cn1 ⊕ Cn2 ⊕ . . . ⊕ Cnt be a
decomposition of an abelian group A for n1, n2, . . . , nt ≥ 1 and s the number of
even ni for 1 ≤ i ≤ t. Then

A ] A =
t⊕

1≤i≤j

C(ni,nj) ⊕ Cs
2 .

Two classic results of Blackburn show that we may compute M(A o B) once we
know A ] A and Inv(A). The first is very general.

Theorem 2.5 (See [11], Theorem 6.3.3). Let A and B be two abelian groups. Then

M(A oB) = M(A)⊕M(B)⊕ (B ⊗B)
1
2 (|A|−|Inv(A)|−1) ⊕ (B ] B)|Inv(A)|.

The second is an application and deals with M(Pn), where Pn is a Sylow p–
subgroup of the symmetric group Spn . It is well known by a result of Kaloujnine
(see [11, Section 6]) that Pn has order pk with k = 1 + p + p2 + . . . + pn−1 and
that P1 ' Cp, P2 ' Cp o Cp, P3 = Cp o (Cp o Cp) and so on until Pn = P1 o Pn−1.
Moreover Pn−1/P ′

n−1 is an elementary abelian p–group of order pn−1 for all n. The
following result is very important after we note that any p–group can be embedded
in a p–group whose Schur multiplier is elementary abelian [11, Corollary 6.3.6].
Therefore most of the groups which have been studied in [1, 4, 5, 6, 13, 14, 15, 17]
turns out to have the Schur multipliers equal to M(Pn).

Theorem 2.6 (See [11], Theorem 6.3.5). If Pn is a Sylow p–subgroup of the sym-
metric group Spn , then M(Pn) = Cs

p, where s = 1
12 (p− 1)(n− 1)n(2n− 1) if p 6= 2

and s = 1
6n(n2 − 1) if p = 2.

We may be more specific on |Inv(A)| when A is a cyclic group in Theorem 2.5.
Before to proceed, the following observation is fundamental and motivates us to
concentrate on p–groups.

Remark 2.7. An abelian group can be always written as direct sum of its Sylow
p–subgroups by a well known result of decomposition (see [10]). On the other
hand, we know that the exterior degree is a multiplicative function, that is, the
exterior degree of a direct product (of finitely many groups) equals the product of
the values of the exterior degree of each factor (see [14]). Therefore it is reasonable
to reduce the study of the exterior degree of abelian groups only to the case of
abelian p–groups. Therefore we will concentrare mostly on p–groups from now on.

We know in fact that each finite cyclic group Cn can be written as a direct sum

Cn ' Cp
m1
1

⊕ Cp
m2
2

⊕ . . .⊕ Cpmr
r

of cyclic groups Cp
mi
i

, where pi ≥ 2 are primes such that n = pm1
1 pm2

2 . . . pmr
r .

There is a good description of |Inv(Cn)| in [8, 9] by the function

ξ : n ∈ N 7→ ξ(n) =

 1, if 8|n,
−1, if 2|n and 4 6 |n, ∈ {−1, 0, 1}
0, otherwise.

Theorem 2.8 (See [8], Lemma 2, Theorem 2). Let n = pm1
1 pm2

2 . . . pmr
r be a prime

decomposition of n with pi < pi+1 and mi > 0 for all 1 ≤ 1 ≤ r − 1. Then

|Inv(Cn)| = 2r+ξ(n).



ON THE EXTERIOR DEGREE OF THE WREATH PRODUCT OF... 5

In particular, if r = 1, then n = pm and

|Inv(Cpm)| = 21+ξ(pm).

The wreath product of cyclic p–groups is described below.

Lemma 2.9. Let A = Cpm and B = Cpn where p is an odd prime and m,n ≥ 1
integers. Then

pb
1
2 n(pm−3)c ≤ |M(A oB)| ≤ pb

1
2 n(pm+1)c.

Moreover, the lower bound is achieved when U(A) = B ⊗ B and the upper bound
when U(B) = 0.

Proof. The Künneth Formula [11, Theorem 2.2.10] shows that

M(Cpm ⊕ Cpn) = M(Cpm)⊕M(Cpn)⊕ (Cpm ⊗ Cpn) = Cpm ⊗ Cpn = Cp(m,n)

We apply Theorem 2.5 and find

M(A oB) = M(Cpm o Cpn)

= M(Cpm)⊕M(Cpn)⊕ (Cpn ⊗ Cpn)
1
2 (pm−|Inv(Cpm )|−1) ⊕ (Cpn ] Cpn)|Inv(Cpm )|

= (Cpn ⊗ Cpn)
1
2 (pm−|Inv(Cpm )|−1) ⊕ (Cpn ] Cpn)|Inv(Cpm )|

but p is odd, then ξ(p) = ξ(pm) = 0 and |Inv(Cpm)| = 2 by Theorem 2.8, and

= (Cpn ⊗ Cpn)
1
2 (pm−3) ⊕ (Cpn ] Cpn)2 = C

1
2 (pm−3)
pn ⊕ (Cpn ] Cpn)2.

If U(B) = B ⊗B, then B ] B = 0 and

M(A oB) = C
1
2 (pm−3)
pn .

If U(B) = 0, then B ] B = B ⊗B and

M(A oB) = C
1
2 (pm−3)
pn ⊕ C2

pn = C
1
2 (pm+1)
pn .

If U(B) is a nontrivial proper subgroup of B ⊗B, then 0 ≤ |B ] B| ≤ |B ⊗B| and

|C
1
2 (pm−3)
pn | ≤ |M(A oB)| ≤ |C

1
2 (pm+1)
pn |,

as claimed. �

Lemma 2.10. Let A = C2m and B = C2n and m,n ≥ 1 integers.
(i) If m = 1, then |M(A oB)| ≤ 2b

1
2 nc.

(ii) If m = 2, then 2b
1
2 nc ≤ |M(A oB)| ≤ 2b

5
2 nc.

(iii) If m ≥ 3, then 2b
1
2 n(2m−5)c ≤ |M(A oB)| ≤ 2b

1
2 n(2m+5)c.

Moreover, the lower bounds are achieved when U(B) = B⊗B and the upper bounds
when U(B) = 0.

Proof. By Theorem 2.8, we should distinguish three cases in order to apply the
same argument of Lemma 2.9. If m = 1, then ξ(2) = −1 and |Inv(C2)| = 1. In this
case we get

2
1
2 n(21−2) ≤ |M(A oB)| ≤ 2

1
2 n(21−1).

If m = 2, then ξ(4) = 0 and |Inv(C4)| = 2. In this case, we get

2
1
2 n(22−3) ≤ |M(A oB)| ≤ p

1
2 n(22+1).

If m ≥ 3, then ξ(2m) = 1 and |Inv(C2m)| = 4. In this case, we get

2
1
2 n(2m−5) ≤ |M(A oB)| ≤ 2

1
2 n(2m+5).
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�

Remark 2.11. Lemma 2.9 shows that

|M(A oB)| ∈ {pb 1
2 n(pm−3)c, pb

1
2 n(pm−2)c, pb

1
2 n(pm−1)c, pb

1
2 npmc, pb

1
2 n(pm+1)c},

that is, we have just five choices for |M(A o B)| and of the above type, for all
m,n ≥ 1. A similar situation happens in Lemma 2.10 (iii), where we find only
eleven possible values of |M(A oB)| between 2b

1
2 n(2m−5)c and 2b

1
2 n(2m+5)c.

The following example is done for convenience of the reader.

Example 2.12. The Schur multipliers of metacyclic p-groups have been computed
by Austin, Beyl and Ng independently, see [11, Theorem 2.11.3, Proposition 2.11.4]
or [2]. It is well known that C2 o C2 ' D8, which is a metacyclic 2–group, has
M(D8) ' C2. We find exactly this result if m = n = 1 in Lemma 2.10 (i). On
the other hand, P2 is a Sylow 2–subgroup of S4 of order 8 and is well known that
P2 ' C2 oC2 ' D8. From Theorem 2.6, s = 1 and again M(P2) ' C2 is confirmed.

Erovenko and Sury [7] showed that if B is an abelian group of order n and A is
an arbitrary abelian group, then the commutativity degree of the wreath product
A oB tends to 1

n2 as the order of A tends to infinity. By the way, Sury has recently
investigated some combinatorial properties of wreath products in [18].

Theorem 2.13 (See [7], Theorem 1.1). Let A and B = {b1, b2, ..., bn} be two abelian
groups. Then

d(A oB) =
1

n2|A|n
n∑

s,t=1

|A|α(s,t),

where α(s, t) = |B : 〈bs, bt〉|.

Immediately, we may draw the following conclusion.

Corollary 2.14. Let A and B = {b1, b2, ..., bn} be two abelian groups. If A o B is
capable, then

1
n2 |A|n

≤ d∧(A oB) ≤ 1
n2|A|n

n∑
s,t=1

|A|α(s,t)

Proof. The upper bound d∧(A oB) ≤ d(A oB) is always true by Theorems 2.2 and
2.13. The lower bound follows by Corollary 2.3 because A oB is capable. �

3. Main theorems

The p–group E1 = 〈a, b, c | ap = bp = cp = 1, [a, c] = [b, c] = 1, [a, b] = c〉 is
extraspecial of order p3 and exponent p and has |M(E1)| = p2. It was investigated
recently in [16] under our perspective. [16, Theorem 2.2 (i)] shows that

(3.1) d∧(E1) =
∑

g∈E1

|C∧
E1

(g)| = p3 + p2 − 1
p5

,

where the first equality is clear from the definitions but the second depends on the
fact that |C∧

E1
(g)| = p for all g ∈ E1. Moreover, Niroomand [16] proved a series of

results for d∧(P ) in which the presence of a bound of the form (3.1) for an arbitrary
p–group P implies that P/Z∧(P ) is elementary abelian (see [16, Theorems 2.4 and
2.6]). Similar conditions were studied already in [1, 4, 5, 17] for the commutativity
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degree and have motivated us to look for a specific type of inequalities in our
investigations, which has the formal aspect of (3.1).

We need to recall from [13] that the map

(3.2) ϕ : g ∈ CG(x) 7→ x ∧ g ∈ M(G)

is a monomorphism of groups such that ker ϕ = C∧
G(x) and CG(x)/C∧

G(x) is iso-
morphic to a subgroup of M(G) for all x ∈ G. Consequently,

(3.3) |CG(x) : C∧
G(x)| ≤ |M(G)|

and, in case ϕ is surjective, we find

(3.4) |CG(x) : C∧
G(x)| = |M(G)|.

The following example is instructive.

Example 3.1. (i). The group E1 satisfies (3.3) properly, because |CE1(x) : C∧
E1

(x)| =
p for all x ∈ E1 and |M(E1)| = p2.

(ii). The extraspecial p–group of order p3 and exponent p2 with p 6= 2 is E2 =
〈a, b, c | ap2

= bp2
= cp2

= 1, [a, c] = [b, c] = 1, [a, b] = c〉 and it satisfies (3.4),
because |CE2(x) : C∧

E2
(x)| = |M(E2)| = 1 for all x ∈ E2.

(iii). A cyclic group Cn has M(Cn) = 1 (see [11]) and satisfies (3.4), because
|CCn

(x) : C∧
Cn

(x)| = |M(Cn)| = 1 for all x ∈ Cn.

If G = P is a p–group, then it is not hard to see that M(P ) is also a p–group
(see [11]) and it is meaningful to introduce

(3.5) ux = logp

|M(P )|
|CP (x) : C∧

P (x)|
in order to measure the gap among (3.3) and (3.4).

Of course, ux depends on x and |CP (x) : C∧
P (x)| · pux = |M(P )| is a bound

depending on x. In particular, ux = 0 if and only if |CP (x) : C∧
P (x)| = |M(P )|,

which is exactly (3.4). Immediately, we observe that all groups with trivial Schur
multiplier must satisfy (3.4) and then they have ux = 0. Example 3.1 (ii) and (iii)
belong to this case and so they are indicative of a more general fact.

Theorem 3.2. Let A = Cpm , B = Cpn , p odd prime, α(s, t) = |B : 〈bs, bt〉| for
bs, bt ∈ B and m,n, s, t ≥ 1. Then

1
pb

1
2 (2mpn+n(pm+5))c

pn∑
s,t=1

pmα(s,t) ≤ d∧(A oB).

Moreover, there exist elements x1, x2, . . . , xk(AoB) ∈ A oB such that u = ux1 +ux2 +
. . . + uxk(AoB) and

d∧(A oB) ≤ 1
pm(pn−1)+n

+
u

pb
1
2 (2mpn+n(pm+1))c

pn∑
s,t=1

pmα(s,t).

Proof. First of all,

(3.6) |A oB| = |B| · |A||B| = pn · (pm)pn

= pn · pmpn

= pn+mpn

.

Notice that Z(A o B) = {(a, a, . . . , a) | a ∈ A} is the set of elements of A|B| in
which the components are equal, that is, the diagonal subgroup of A|B| and so
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|Z(A oB)| = |A| ≥ |Z∧(A oB)|. We will prove before the upper bound and then the
lower bound.

Since for all i = 1, 2, . . . , k(A oB)∣∣∣∣C∧
AoB(xi)

CAoB(xi)

∣∣∣∣ = uxi

|M(A oB)|
,

we get

d∧(A oB) =
1

|A oB|

k(AoB)∑
i=1

∣∣∣∣C∧
AoB(xi)

CAoB(xi)

∣∣∣∣
=

1
|A oB|

(
|Z∧(A oB)|+ k(A oB)− |Z∧(A oB)|

|M(A oB)|

)
and, if u = ux1 + ux2 + . . . + uk(AoB), then the above quantity becomes

=
u k(A oB)

|A oB| |M(A oB)|
+
|Z∧(A oB)|
|A oB|

(
1− u

|M(A oB)|

)
= u

d(A oB)
|M(A oB)|

+
|Z∧(A oB)|
|A oB|

(
1− u

|M(A oB)|

)
≤ u

d(A oB)
|M(A oB)|

+
|A|

|B| · |A||B|

(
1− u

|M(A oB)|

)
(3.7) = u

d(A oB)
|M(A oB)|

+
1

|B| · |A||B|−1

(
1− u

|M(A oB)|

)
.

Now Theorem 2.13 implies

(3.8) d(A oB) =
1

p2npmpn

pn∑
s,t=1

pmα(s,t) =
1

p2n+mpn

pn∑
s,t=1

pmα(s,t)

and, if we replace (3.8) in (3.7) and use (3.6), then we get

=
u

|M(A oB)|

(
1

p2n+mpn

pn∑
s,t=1

pmα(s,t)

)
+

1
pn+mpn−m

(
1− u

|M(A oB)|

)

≤ u

|M(A oB)|

(
1

p2n+mpn

pn∑
s,t=1

pmα(s,t)

)
+

1
pn+mpn−m

.

But the lower bound in Lemma 2.9 implies 1
|M(AoB)| ≤

1

pb
1
2 n(pm−3)c and so we may

upper bound with

≤ u

pb
1
2 n(pm−3)c

(
1

p2n+mpn

pn∑
s,t=1

pmα(s,t)

)
+

1
pn+mpn−m

=
u

pb
1
2 (n(pm+1)+2mpn)c

pn∑
s,t=1

pmα(s,t) +
1

pn+m(pn−1)
,

as claimed.
On the other hand,

d∧(A oB) =
d(A oB)
|M(A oB)|

+
|Z∧(A oB)|
|A oB|

(
1− 1

|M(A oB)|

)
≥ d(A oB)
|M(A oB)|
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and by Theorem 2.13 and the upper bound of Lemma 2.9 we get

=
1

|M(A oB)|

(
1

p2n+mpn

pn∑
s,t=1

pmα(s,t)

)
≥ 1

pb
1
2 n(pm+1)c

(
1

p2n+mpn

pn∑
s,t=1

pmα(s,t)

)

=
1

pb
1
2 (n(pm+5)+2mpn)c

pn∑
s,t=1

pmα(s,t)

as claimed. �

The even case is described below.

Theorem 3.3. Let A = C2m , B = C2n , α(s, t) = |B : 〈bs, bt〉| for bs, bt ∈ B,
m,n, s, t ≥ 1 and suitable x1, x2, . . . , xk(AoB) ∈ A oB such that u = ux1 +ux2 + . . .+
uxk(AoB) .

(i) If m = 1, then

1
2b

1
2 (m2n+1+5n)c

2n∑
s,t=1

2mα(s,t) ≤ d∧(A oB) ≤ 1
2n+m2n−m

+
u

22n+m2n

2n∑
s,t=1

2mα(s,t)

(ii) If m = 2, then

1
2b

5
2 (m2n+1+5n)c

2n∑
s,t=1

2mα(s,t) ≤ d∧(AoB) ≤ 1
2n+m2n−m

+
u

2b
1
2 (m2n+1+5n)c

2n∑
s,t=1

2mα(s,t)

(iii) If m ≥ 3, then

1
2b

1
2 (m2n+1+n(2m+9))c

2n∑
s,t=1

2mα(s,t) ≤ d∧(A oB) ≤ 1
2n+m2n−m

+
u

2b
1
2 (m2n+1+n(2m−1))c

2n∑
s,t=1

2mα(s,t).

Proof. We follow the argument of the proof of Theorem 3.2. From Theorem 2.13,

d∧(A oB) ≤ u

|M(A oB)|

(
1

22n+m2n

2n∑
s,t=1

2mα(s,t)

)
+

1
2n+m2n−m

and we should distinguish three cases in view of Lemma 2.10. If m = 1, then

d∧(A oB) ≤ u

22n+m2n

2n∑
s,t=1

2mα(s,t) +
1

2n+m2n−m
.

If m = 2, then

d∧(A oB) ≤ u

2b
1
2 nc

(
1

22n+m2n

2n∑
s,t=1

2mα(s,t)

)
+

1
2n+m2n−m

.

If m ≥ 3, then

d∧(A oB) ≤ u

2b
1
2 n(2m−5)c

(
1

22n+m2n

2n∑
s,t=1

2mα(s,t)

)
+

1
2n+m2n−m

.
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On the other hand,

d∧(A oB) ≥ d(A oB)
|M(A oB)|

and the following cases should be considered by Lemma 2.10 and Theorem 2.13. If
m = 1, then we may lower bound with

≥ 1
22n+m2n

2n∑
s,t=1

2mα(s,t) ≥ 1
2b

1
2 nc

1
22n+m2n

2n∑
s,t=1

2mα(s,t).

If m = 2, then we have analogously

≥ 1
2b

5
2 nc

(
1

22n+m2n

2n∑
s,t=1

2mα(s,t)

)
.

If m ≥ 3, then we have analogously

≥ 1
2b

1
2 n(2m+5)c

(
1

22n+m2n

2n∑
s,t=1

2mα(s,t)

)
.

�

We end with an application to the Sylow p–subgroups Pn of the symmetric group
Spn , described in Theorem 2.6.

Theorem 3.4. Let Pn be a capable Sylow p–subgroup of Spn and u = ux1 + . . . +
uxk(Pn) for suitable x1, . . . , xk(Pn) ∈ Pn.

(i) If p 6= 2, then

d∧(Pn) =
u d(Pn)

p
1
12 (p−1)(n−1)n(2n−1)

+
1

p
1−pn

1−p

(
1− u

p
1
12 (p−1)(n−1)n(2n−1)

)
.

(ii) If p = 2, then

d∧(Pn) =
u d(Pn)

p
1
6 n(n2−1)

+
1

p
1−pn

1−p

(
1− u

p
1
6 n(n2−1)

)
.

Proof. (i). We know from Theorem 2.6 that Pn = P1 o Pn−1,

|Pn| = 1 + p + p2 + . . . + pn−1 =
1− pn

1− p

and M(Pn) = Cs
p , where s = 1

12 (p − 1)(n − 1)n(2n − 1) if p 6= 2. Moreover, Pn is
capable, then Z∧(Pn) = 1. We may repeat the proof of Theorem 3.2 and get

d∧(Pn) =
1

|Pn|

k(Pn)∑
i=1

∣∣∣∣C∧
Pn

(xi)
CPn

(xi)

∣∣∣∣ = 1
|Pn|

(
|Z∧(Pn)|+ k(Pn)− |Z∧(Pn)|

|M(Pn)|

)

=
u k(Pn)

|Pn| |M(Pn)|
+
|Z∧(Pn)|
|Pn|

(
1− u

|M(Pn)|

)
= u

d(Pn)
|M(Pn)|

+
|Z∧(Pn)|
|Pn|

(
1− u

|M(Pn)|

)
= u

d(Pn)
|M(Pn)|

+
1

|Pn|

(
1− u

|M(Pn)|

)
=

u

|M(Pn)|

(
d(Pn)− 1

|Pn|

)
+

1
|Pn|

=
u

p
1
12 (p−1)(n−1)n(2n−1)

(
d(Pn)− 1

p1+p+p2+...+pn−1

)
+

1
p1+p+p2+...+pn−1
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=
u

p
1
12 (p−1)(n−1)n(2n−1)

(
d(Pn)− 1

p
1−pn

1−p

)
+

1

p
1−pn

1−p

=
u d(Pn)

p
1
12 (p−1)(n−1)n(2n−1)

+
1

p
1−pn

1−p

(
1− u

p
1
12 (p−1)(n−1)n(2n−1)

)
.

(ii). In case p = 2, it is enough to replace the term 1
12 (p− 1)(n− 1)n(2n− 1) with

1
6n(n2 − 1) by Theorem 2.6. �

The importance of Theorem 3.4 is due to the fact that it provides a relation
among d∧(Pn) and d(Pn). Since there are several results on the commutativity
degree in [1, 4, 5, 6], the term d(Pn) is well known and then Theorem 3.4 is signi-
ficative.
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