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ABSTRACT: In this study, we determine the commutator subgroup and centre of groups of order p3q, where p and q are
distinct primes and p < q. The software package Groups, Algorithms and Programming (GAP) is used to verify the hand
calculation of the commutator subgroup and centre of this group. From the results obtained, the commutator subgroup and
centre of the groups are partitioned into some cases depending on their classification.
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INTRODUCTION

Let G be a group. The commutator subgroup of G,
which will be denoted by G′, is a subgroup of G
generated by all commutators in G. Meanwhile, the
centre of a group G, Z(G), is the set of elements in G
that commute with every element of G. Consider the
homomorphism τG→ AutG defined by (x)gτ = xg

with image InnG. The kernel of τ is precisely the
centre, Z(G)1.

The commutator subgroup and centre of the group
are important elements in determining the non-abelian
tensor square, the Schur multiplier and capability of
groups. The Schur multiplier, non-abelian tensor
square, and capability of groups of order p2q, where
p and q are distinct primes, have been determined by
Rashid et al2. Meanwhile, Rashid et al3 determined
the non-abelian tensor square for groups of order 8q
where q is an odd prime. Zainal et al4 focused on
the non-abelian tensor square of non-abelian group of
order p4, where p is an odd prime. Groups, Algo-
rithms and Programming (GAP) software5 is a system
for computational discrete algebra, with particular
emphasis on Computational Group Theory. GAP also
provides large amounts of data quickly so that these
data can be used to formulate a conjecture. In some
cases, by the use of GAP, the produced patterns can be
used to approach for proving a theorem. In this study,
we use GAP software to compute the commutator

subgroup and centre of groups of order p3q where p
and q are distinct prime for some small p and q and
p < q. The results are then proved in general.

PRELIMINARIES

This section includes some basic results which are
necessary in this study.

In 1899, the classification of groups of order p3q
has been obtained by Western6. He proved that there
are 27 types of groups of order p3q, where p < q. The
classification of groups of order p3q, where p < q is
stated in the following theorem.

Theorem 1 [Western] Let G be a non-abelian group
of order p3q, where p and q are distinct prime and
p < q. Then exactly one of the following holds:

G1
∼=
〈
a, b, c | a4 = b2 = cq = 1, bab = a−1, ac = ca,

bc = cb
〉

G2
∼=
〈
a, b, c | a4 = b4 = cq = 1, b2 = a2,

b−1ab = a−1, ac = ca, bc = cb
〉

G3
∼=
〈
a, b | a8 = bq = 1, a−1ba = b−1

〉
G4
∼=
〈
a, b, c | a4 = b2 = cq = 1, ab = ba, ac = ca,

bcb = c−1
〉

G5
∼=
〈
a, b, c | a4 = b2 = cq = 1, ab = ba,

a−1ca = c−1, bc = cb
〉
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G6
∼=
〈
a, b, c | a4 = b2 = cr = dq = 1,

ab = ba, ac = ca, bc = cb,

ad = da, bc = cb, cdc = d−1
〉

G7
∼=
〈
a, b, c | a4 = b2 = cq = 1, bab = a−1,

ac = ca, bcb = c−1
〉

G8
∼=
〈
a, b, c | a4 = b2 = cq = 1, bab = a−1,

a−1ca = c−1, bc = cb
〉

where q ≡ 1 (mod 2)

G9
∼=
〈
a, b, c | a4 = b4 = cq = 1, b2 = a2,

b−1ab = a−1, ac = ca,

b−1cb = c−1
〉

G10
∼=
〈
a, b, c | a8 = bq = 1, a−1ba = cm

〉
where m is any primitive root of

m4 ≡ 1 (mod q) and q ≡ 1 (mod 4).

G11
∼=
〈
a, b, c | a4 = b2 = cq = 1, ab = ba,

a−1ca = cm, bc = cb
〉

where m is any primitive root of

m8 ≡ 1 (mod q) and q ≡ 1 (mod 8).

G12
∼=
〈
a, b | a8 = bq = 1, a−1ba = bm

〉
where m is any primitive root of

m8 ≡ 1 (mod q) and q ≡ 1 (mod 8).

G13
∼=
〈
a, b, c, d | a2 = b2 = c2 = dq = 1, ab = ba,

ac = ca, bc = cb, ad = da,

d−1bd = c, d−1cd = bc
〉

G14
∼=
〈
a, b, c | a4 = b4 = c3 = 1, a2 = b2,

b−1ab = a−1, c−1ac = b,

c−1bc = ac
〉

G15
∼=
〈
a, b, c | a4 = b4 = c3 = 1, bab = a−1,

c−1a2b = b, c−1bc = a2b,

a−1ca = c2a2b
〉

G16
∼=
〈
a, b, c, d | a2 = b2 = c2 = d7 = 1, ab = ba,

ac = ca, bc = cb, d−1ad = b,

d−1bd = c, d−1cd = ab
〉

G17
∼=
〈
a, b, c | ap

2
= bp = cq = 1, b−1ab = ap+1,

ac = ca, bc = cb
〉

G18
∼=
〈
a, b, c, d | ap = bp = cp = dq = 1, ab = ba,

ac = ca, c−1bc = ab, ad = da,

bd = db, cd = dc
〉

G19
∼=
〈
a, b | ap

3
= bq = 1, a−1ba = bma

〉

where m is any primitive root [0, 1]
of mp ≡ 1 (mod q) and q ≡ 1 (mod p).

G20
∼=
〈
a, b, c | ap

2
= bp = cq = 1, ab = ba,

ac = ca, b−1cb = cm
〉

where m is any primitive root of

mp ≡ 1 (mod q) and q ≡ 1 (mod p).

G21
∼=
〈
a, b, c, d | ap = bp = cp = dq = 1, ab = ba,

ac = cb, ad = da, bd = db,

c−1dc = dm
〉

where m is any primitive root of

mp ≡ 1 (mod q) and q ≡ 1 (mod p).

G22
∼=
〈
a, b, c | ap

2
= bp = cq = 1, b−1ab = ap+1,

ac = ca, b−1cb = Qn
〉

where m is any primitive root of

mp ≡ 1 (mod q) and q ≡ 1 (mod p)

and n = m,m2, . . . ,mp−1.

G23
∼=
〈
a, b, c, d | ap = bp = cp = dq = 1, ab = ba,

ac = cb, ad = da, bd = db,

c−1bc = ab, c−1dc = dm
〉

where m is any primitive root of

mp ≡ 1 (mod q) and q ≡ 1 (mod p).

G24
∼=
〈
a, b | ap

3
= bq = 1, a−1ba = bm

〉
where m is any primitive root of

mp2 ≡ 1 (mod q) and q ≡ 1 (mod p2).

G25
∼=
〈
a, b, c | ap

2
= bp = cq = 1,

ab = ba, a−1ca = ca, bc = cb
〉

where m is any primitive root of

mp2 ≡ 1 (mod q) and q ≡ 1 (mod p2).

G26
∼=
〈
a, b | ap

3
= bq = 1, a−1ba = bm

〉
where m is any primitive root of

mp2 ≡ 1 (mod q) and q ≡ 1 (mod p3).

GAP COMPUTATIONS

From Theorem 1, we can see that there are groups
of order p3q, with 2, 3, or 4 generators. Since the
computation of the commutator subgroup and centre
for all 2, 3, or 4-generator groups is similar, the
commutator subgroup and centre are computed in
details for exactly one type of group from each family
of generators stated earlier.

In the first step, we use GAP to compute the
commutator subgroup of groups of order p3q.
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GAP was used to compute the commutator sub-
group for groups of type G1, G3 and G6 with q = 3
and presented as follows:

Groups of type G1 with q = 3

gap> f:=FreeGroup(3);
<free group on the generators [ f1, f2, f3 ]>
q=3
gap> G:=f/[f.1ˆ4,f.2ˆ2,f.3ˆ3,f.2*f.1*f.2*f.1,
f.1*f.3*f.1ˆ3*f.3ˆ2,f.2*f.3*f.2*f.3ˆ2];
<fp group on the generators [ f1, f2, f3 ]>
gap>StructureDescription(G);
"C3 x D8"
gap> D:=DerivedSubgroup(G);
Group([ f1ˆ-2 ])
gap>StructureDescription(D);
"C2"

Groups of type G3 with q = 3

gap> f:=FreeGroup(2);
<free group on the generators [ f1, f2 ]>
q=3;
gap> G:=f/[f.1ˆ8,f.2ˆ3,f.1ˆ7*f.2*f.1*f.2];
<fp group on the generators [ f1, f2 ]>
gap>StructureDescription(G);
"C3 : C8"
gap> D:=DerivedSubgroup(G);
Group([ f2 ])
gap> StructureDescription(D);
"C3"

Groups of type G6 with q = 3

gap> f:=FreeGroup(4);
<free group on the generators
[ f1, f2, f3, f4 ]>
q=3;
gap>G:=f/[f.1ˆ2,f.2ˆ2,f.3ˆ3,f.4ˆ2,
f.1*f.2*f.1*f.2,f.1*f.4*f.1*f.4,
f.2*f.4*f.2*f.4,f.1*f.3*f.1*f.3ˆ2,
f.2*f.3*f.2*f.3ˆ2,f.4*f.3*f.4*f.3];
gap> D:=DerivedSubgroup(G);
<fp, no generators known>
gap> StructureDescription(G);
"C2 x C2 x S3"
gap> StructureDescription(D);
"C3"

These computations show that the commutator sub-
group for groups of type G1 with q = 3 is a cyclic
group of order 2 which is isomorphic to Z2 while
the commutator subgroup for groups of type G3 and
G6 with q = 3 is a cyclic group of order 3 which is
isomorphic to Z3.

Next, the GAP programmes which are used to
compute the centre for groups of type G1 and G3 with
q = 3, 5, and 7 and groups of type G6 with q = 11 are
shown below.

Groups of type G1 with
q = 3

gap> f:=FreeGroup(3);
<free group on the generators [f1, f2, f3]>
gap> G:=f/[f.1ˆ4,f.2ˆ2,f.3ˆ3,f.2*f.1*f.2*f.1,
f.1*f.3*f.1ˆ3*f.3ˆ2,f.2*f.3*f.2*f.3ˆ2];
<fp group on the generators [ f1, f2, f3 ]>
gap> C:=Center(G);
Group([ f3, f2*f1*f2ˆ-1*f1ˆ-1, f2ˆ2,
f2*f3*f2ˆ-1,f1ˆ2, f1*f3*f1ˆ-1,

f1*f2*f1*f2ˆ-1, f1*f2ˆ2*f1ˆ-1,
f1*f2*f3*f2ˆ-1*f1ˆ-1 ])
gap> StructureDescription(C);
"C6"

q = 5

gap> f:=FreeGroup(3);
<fp group on the generators [ f1, f2, f3 ]>
gap> G:=f/[f.1ˆ4,f.2ˆ2,f.3ˆ5,f.2*f.1*f.2*f.1,
f.1*f.3*f.1ˆ3*f.3ˆ4,f.2*f.3*f.2*f.3ˆ4];
gap> C:=Center(G);
Group([ f3, f2*f1*f2ˆ-1*f1ˆ-1, f2ˆ2,
f2*f3*f2ˆ-1, f1ˆ2, f1*f3*f1ˆ-1,
f1*f2*f1*f2ˆ-1, f1*f2ˆ2*f1ˆ-1,
f1*f2*f3*f2ˆ-1*f1ˆ-1 ])
gap> StructureDescription(C);
"C10"

q = 7

gap>f:=FreeGroup(3);
<fp group on the generators [ f1, f2, f3 ]>
gap> G:=f/[f.1ˆ4,f.2ˆ2,f.3ˆ7,f.2*f.1*f.2*f.1,
f.1*f.3*f.1ˆ3*f.3ˆ6,f.2*f.3*f.2*f.3ˆ6];
gap> C:=Center(G);
Group[f3,f2*f1*f2ˆ-1*f1ˆ-1,f2ˆ2,f2*f3*f2ˆ-1,
f1ˆ2,f1*f3*f1ˆ-1,f1*f2*f1*f2ˆ-1,f1*f2ˆ2*f1ˆ-1,
f1*f2*f3*f2ˆ-1*f1ˆ-1 ])
gap> StructureDescription(C);
"C14"

Groups of type G3 with
q = 3

gap> f:=FreeGroup(2);
<free group on the generators [ f1, f2 ]>
gap> G:=f/[f.1ˆ8,f.2ˆ3,f.1ˆ7*f.2*f.1*f.2];
gap> C:=Center(G);
Group([f2ˆ2*f1ˆ-1*f2ˆ-1*f1ˆ-1,f2*f1ˆ2*f2ˆ-1,
f2*f1*f2*f1ˆ-1,f1ˆ2,f1*f2ˆ2*f1ˆ-1*f2ˆ-1,
f1*f2*f1ˆ2*f2ˆ-1*f1ˆ-1,f1*f2*f1*f2])
gap> StructureDescription(C);
"C4"

q = 5

gap> f:=FreeGroup(2);
<free group on the generators [ f1, f2 ]>
gap> G:=f/[f.1ˆ8,f.2ˆ5,f.1ˆ7*f.2*f.1*f.2];
gap> C:=Center(G);
Group([f2*f1ˆ2*f2ˆ-1,f2*f1*f2*f1ˆ-1,f2ˆ3*f1ˆ-
1*f2ˆ-2*f1ˆ-1,f2ˆ2*f1ˆ2*f2ˆ-2,f2ˆ2*f1*f2*f1ˆ-
1*f2ˆ-1,f1ˆ2,f1*f2*f1ˆ2*f2ˆ-1*f1ˆ-1,
f1*f2*f1*f2,f1*f2ˆ3*f1ˆ-1*f2ˆ-2,
f1*f2ˆ2*f1ˆ2*f2ˆ-2*f1ˆ-1,
f1*f2ˆ2*f1*f2*f1ˆ-1*f2ˆ-1*f1ˆ-1])
gap> StructureDescription(C);
"C4"

q = 7

gap> f:=FreeGroup(2);
<free group on the generators [ f1, f2 ]>
gap> G:=f/[f.1ˆ8,f.2ˆ7,f.1ˆ7*f.2*f.1*f.2];
gap> C:=Center(G);
Group(<15 generators>)
gap> StructureDescription(C);
"C4"

Groups of type G6 with q = 11

<fp group on the generators [f1,f2,f3,f4]>
gap>G:=f/[f.1ˆ2,f.2ˆ2,f.3ˆ7,f.4ˆ2,
f.1*f.2*f.1*f.2,f.1*f.4*f.1*f.4,
f.2*f.4*f.2*f.4,f.1*f.3*f.1*f.3ˆ10,
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f.2*f.3*f.2*f.3ˆ10,f.4*f.3*f.4*f.3];
gap> C:=Center(G);
Group(<67 generators>)
gap> StructureDescription(C);
"C2 x C2"

The above computations show that the centre for
groups of type G1 with q = 3, 5, and 7 are cyclic
groups of order 6, 10, and 14, respectively, while the
centre for groups of type G3 with q = 3, 5, and 7 are
cyclic groups of order 4 and the centre for groups of
type G6 with q = 11 are isomorphic to Z2 ×Z2.

Consider the pattern given by GAP algorithms,
we obtained Theorem 2 and Theorem 3. We also
provide the proofs for certain type of groups in the
classification.

MAIN RESULTS

In this section, we presented our results in general.
The first theorem gives the commutator subgroup
for non-abelian group of order p3q while the second
theorem gives the centre of all the groups in the
classification.

Theorem 2 Let G be a non-abelian group of order
p3q, where p and q are distinct prime and p < q. Then
the commutator subgroup of G is exactly one of the
following:

G′ ∼=



Z2; G is G1, G2,
Zq; G is G3, G4, G5, G6, G10, G11, G12,
Z2q; G is G7, G8, G9,
Z2

2; G is G13,
Q2; G is G14,
A4; G is G15,
Z3

2; G is G16,
Zp; G is G17, G18,
Zq; G is G19, G20, G21, G22, G25, G26,

G27,
Zpq; G is G23, G24.

Proof : First we prove for G = G1. By using the
relations bab = a−1, ac = ac and bc = cb, every
element of G can be uniquely written in the form
aibjck where

0 6 i 6 3, 0 6 j 6 1 and 0 6 k 6 q− 1.

Suppose that g = aibjck and g′ = ai
′
bj

′
ck

′
be two

arbitrary elements of G. Then we have

Case 1: j = j′ = 0. In this case by the relations, it is
clear that [g, g′] = 1.

Case 2: j = 1, j′ = 0. By the relations ac = ca and

bc = cb,

[g, g′] = aibckai
′
ck

′
c−kba−ic−k

′
a−i

′

= aibckba−i
′
ck

′−ka−ic−k
′
a−i

′

= a−2i′ .

Case 3: j = 0, j′ = 1. Similarly, [g, g′] = a−2i′ .

Case 4: j = j′ = 1. In this case,

[g, g′] = aibckai
′
bck

′
c−kba−ic−k

′
ba−i

′

= aia−i
′
bckbck

′−kba−ic−k
′
ba−i

′

= ai−i
′
ck+k

′−kaibc−k
′
ba−i

′

= a2(i−i′).

All these calculations show that G′ = {1, a2}, that is,
G′ ∼= Z2.

For determining the commutator subgroup for
group G = G3, using the relations a−1ba = b−1, it is
clear that every element of G can be uniquely written
in the form aibj where 0 6 i 6 7 and 0 6 j 6 q − 1.
Let g = aibj and g′ = ai

′
bj

′
be two arbitrary elements

of G. Then

[g, g′] = aibjai
′
bj

′
b−ja−ib−j

′
a−i

′
.

This calculation shows that

G′ = {1, b, . . . , bq−1} ∼= Zq.

For determining the commutator subgroup for group
G = G6, note that every element ofG can be uniquely
written in the form aibjckds where 0 6 i, j, k 6 1 and
0 6 s 6 q−1. Let g = aibjckds and g′ = ai

′
bj

′
ck

′
ds

′

be two arbitrary elements of G. Then

[g, g′] = aibjckdsai
′
bj

′
ck

′
ds

′
d−sc−k

b−ja−id−s
′
c−k

′
b−j

′
a−i

′
.

The following cases are considered:
Case 1: k = k′ = 0. In this case by the relations, it is

clear that [g, g′] = 1.
Case 2: k = 1, k′ = 0. By the relations,

[g, g′] = aibjcdsai
′
bj

′
ds

′
d−scb−j

a−id−s
′
b−j

′
a−i

′
= d−2s′ .

Case 3: k = 0, k′ = 1. By the similar way, [g, g′] =
d−2s′ .

Case 4: k = k′ = 1. In this case [g, g′] = d2(s′−s).
Hence we have G′ = {1, d, . . . , dq−1}, that is,
G′ ∼= Zq .
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The proofs of other cases can be done in a similar
manner. 2

In the next theorem, the centre of a non-abelian
group of order p3q, where p and q are distinct primes
and p < q is stated.

Theorem 3 Let G be a non-abelian group of order
p3q, where p and q are distinct prime and p < q. Then
exactly one of the following holds:

Z(G)∼=



1; G is G12, G15, G16, G27,
Z2; G is G7, G8, G9, G10, G11,

G13, G14,
Zp; G is G23, G24, G25,
Z2q; G is G1, G2,
Zq; G is G3, G4,
Zp2 ; G is G19, G20,
Zpq; G is G17, G18,
Zp ×Zp; G is G5, G6, G21, G22, G26.

Proof : There are 27 types of groups in the classifi-
cation which include 2, 3, or 4 generators of groups.
Since the computations of the centre for all 2, 3, or
4-generator groups are similar, Z(G) is computed in
details for exactly one type of group from each family
of generators stated earlier. In this paper, Z(G) is
computed for groups of types G1, G3 and G6 for 3,
2, and 4 generators, respectively.

For computing the centre for the group G = G1,
let g = aibjck be a central element of G. Then

aibjck = g = ga = ai(ba)jck = aia−2jbjck,

which implies that bj = a−2jbj , that is j = 0. Thus
g = aick. On the other hand,

aick = g = gb = (ab)i(cb)k = a−ick,

it follows that i = 0, 2. Hence, every element of Z(G)
can be written in the form of ck or a2ck, where

0 6 k 6 q− 1.

There exist two types of groups of order 2q, namely
Z2q and D2q and since in our computation of the
centre has an element a2c of order 2q, it implies that
Z(G) ∼= Z2q .

For the group G = G3, let g = aibj be a central
element of G. Then

aibj = g = ga = ai(ba)j = aib−j ,

which implies that b2j = 1, when j = 0. Thus g = ai.
If a ∈ Z(G), ab = ba. But the relation ba = a−1b
implies that b2 = 1, which is a contradiction. By
similar way a, a3, a5, a7 /∈ Z(G), that is,

Z(G) = {1, a2, a4, a6} ∼= Z4.

Subsequently, for the group G = G6, G ∼= Dq ×Z2
2,

then

Z(G) = Z(Z2 ×Z2)×Z(D2q) = Z2 ×Z2.

2

CONCLUSIONS

In this paper, we have determined the commutator
subgroup and centre for all non-abelian groups of
order p3q where p and q are distinct prime and
p < q. The GAP software has been used to facilitate
the computation for certain type of groups, in the
classification.
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