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Graphical abstract 

Abstract 

An independent set of a graph is a set of pairwise non-adjacent vertices while the independence 
number is the maximum cardinality of an independent set in the graph. The independence polynomial 
of a graph is defined as a polynomial in which the coefficient is the number of the independent set in 
the graph.  Meanwhile, a graph of a group G is called n -th central if the vertices are elements of 
G and two distinct vertices are adjacent if they are elements in the n -th term of the upper central 
series of G . In this research, the independence polynomial of the n -th central graph is found for 
some dihedral groups. The results are computed by using the definition of independence polynomial 
and also by using the independence polynomial of the union of complete graphs. 
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INTRODUCTION 

Throughout this paper, only simple graph is considered and will 
be referred as graph. A graph is simple if it has no loops and no 
multiple edges. A graph is a pair Γ = (𝑉, 𝐸) where 𝑉 is the vertex set 
and 𝐸, the edge set, is the unordered pair of elements of 𝑉. Let 𝑢, 𝑣 ∈ 
𝑉, vertices 𝑢 and 𝑣 are adjacent to each other in Γ if and only if there 
is an edge between 𝑢 and 𝑣, i.e. (𝑢, 𝑣) ∈ 𝐸. An edge 𝑒 = (𝑥, 𝑦) is said 
to be incident with each one of its end vertices, 𝑥 and 𝑦. 

Many researches have been done to study the algebraic properties 
of groups using the properties of graphs. Some examples of graphs 
that were associated to groups are the conjugate graph (Erfanian and 
Tolue, 2012), non-commuting graph (Abdollahi et. al., 2006), center 
graph (Balakrishnan et. al., 2011),  and n -th central graph (Karimi et. 
al., 2016). 

The combinatorial information of a graph is stored in the 
coefficients of a specific graph polynomial, such as the independence 
polynomial. Hoede and Li (1994) had proved a few useful tools to 
calculate the independence polynomial. Ferrin (2014) had presented a 
few independence polynomials of some common graphs including the 
complete graph, complete bipartite graph, and path graph. Besides the 
common graphs, the independence polynomial can also be determined 
for graphs which are associated to groups. 

This paper is structured into three parts. The first part is the 
introduction. The second part includes the preliminaries, namely the 
theorems that act as tools in this research. The last part is the main 
result. We will compute the independence polynomial of the n -th 

central graph of the dihedral groups G
1

and G
2

, given in the 
following: 

(i)  G
1
= a, b : a3 = b2 = 1, bab = a −1

(ii)	G
2
= a, b : a 4 = b2 = 1, bab = a −1

PRELIMINARIES 

Some basic concepts that are needed in order to compute the 
independence polynomial of a graph associated to a group are 
included in this section. Below are some definitions from graph 
theory. 

Definition 2.1 (Rosen, 2013) Independent Set 
An independent set is a set of vertices of a graph in which no two 
vertices in the set are adjacent. 

Definition 2.2 (Rosen, 2013) Independence Number
The independence number of a graph Γ , denoted as α Γ( ) is the 

maximum number of vertices in an independent set of vertices for the 
graph. 
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Definition 2.3 (Balakrishnan and Ranganathan, 2012) 
Neighborhood, Closed Neighborhood, Empty Graphy, Null 
Graph 
Let (u, v) be an edge of graph Γ . Then the vertex u is called the 
neighbor of the vertex v . Open neighborhood (or just neighborhood), 
of v is the set of all vertices adjacent to v , denoted as follows : 

N (v) = u ∈V  | u, v( ) ∈ E , u ≠ v{ } . 

Closed neighborhood of v in Γ is the set N v[ ] = N v( )∪ v{ } . 
If the neighborhood of every vertex is empty, then there is no edges in 

the graph. Such graph is called an empty graph, denoted by E
n
. If 

n = 0 , then the graph is called null graph, denoted by E
0

:= ∅ . 
The following are some basic properties regarding the concepts 

of independence polynomial that will be used in the computation of 
the independence polynomial of graph throughout this paper. 

Definition 2.4 (Hoede and Li, 1994) Independence 
Polynomial 
The independence polynomial of a graph Γ is the polynomial whose 

coefficient on x k is given by the number of independent sets of size 

k in Γ . This is denoted by I Γ ; x( ) as follows: 

	 I Γ ; x( ) =
k=0

α Γ( )

∑c
k
x k ,

where c
k
	 is the number of independent sets of size k in Γ and 

α Γ( ) is the independence number of graph Γ . 
However, it is difficult to compute the independence polynomial 

of a large graph only by using the definition. Hence, other researcher 
established some methods in finding the independence polynomial by 
reducing the calculations to recursively smaller graphs. The theorem 
below is the first method where it uses the relation of independence 
polynomial of disjoint graphs. 

Theorem 2.1 (Hoede and Li, 1994) 
Let Γ

1
and Γ

2
be two disjoint graphs. Then we have the 

independence polynomial of the union of two graphs as follows: 

	 I Γ
1
∪ Γ

2
; x( ) = I Γ

1
; x( ) ⋅ I Γ

2
; x( ).

Next theorem gives the method of decomposing the graph vertex 
by vertex. The vertex of the graph is removed one by one causing the 
graph to be separated into connected components and later by 
Theorem 2.1, the independence polynomial can be computed. 

Theorem 2.2 (Hoede and Li, 1994) 
Let Γ be a simple graph and v ∈V . Then we obtain the 
independence polynomial of Γ by removing its vertex, as follows: 

	 I Γ ; x( ) = I Γ − v : x( ) + xI Γ − N v[ ]; x( ).
Another method to compute the independence polynomial of a 

graph is by removing the edges of the graph as stated in the next 
theorem. Ferrin (2014) mentioned that decomposing the graph by 
removing edges will yield a more obvious reccurrence. 

Theorem 2.3 (Hoede and Li, 1994) 
Let Γ be a simple graph and e = u, v( ) ∈ E . Then the independence 
polynomial of Γ is obtained by removing its edge, as follows:	 
	 I Γ ; x( ) = I Γ \ e : x( ) − x 2 I Γ − N u[ ]∪ N v[ ]( ); x( ).

Ferrin (2014) had presented three propositions below to compute 
the independence polynomial of graphs along with the Theorem 2.1, 
2.2 and 2.3. 

Proposition 2.1 (Ferrin, 2014) 
The independence polynomial of an empty graph Γ of order n is 

I Γ ; x( ) = 1+ x( )n

. 

Proposition 2.2 (Ferrin, 2014) 
The independence polynomial of complete graph, K

n
is 

I K
n
; x( ) = nx + 1 . 

Proposition 2.3 (Ferrin, 2014) 
Let G

1
and G

2
be two distinct groups with graph Γ

G
1

and Γ
G

2

associated to both groups respectively. If G
1
≅ G

2
, then Γ

G
1

≅ Γ
G

2

, 

hence I Γ
G

1

; x( ) ≅ I Γ
G

2

; x( ) . 

Next, we will state some basic concepts from group theory and 
graph theory that mostly are related to n –th central graph that will be 
used in this paper. 

Definition 2.5 (Fraleigh, 2003) Center 
The center Z G( ) of a group G is defined by 

Z G( ) = {a ∈G  |ag = ga for all g ∈G}.

Definition 2.6 (Balakrishnan et. al., 2011) Center Graph 
Let Z G( ) be the center of a group G . The center graph Γ

Z
G( ) of 

G is a graph with vertex set containing all the elements of G and 

two distinct vertices x and y are adjacent if and only if xy ∈Z G( ) . 

Definition 2.7 (Fraleigh, 2003) Upper Central Series 
The chain of normal subgroups 

	 Z
0

G( ) = e{ } ≤ Z
1

G( ) = Z G( ) ≤ Z
2

G( ) ≤…

is the upper central series of the group G where 

Z
i+1

G( )
Z

i
G( ) = Z G

Z
i

G( )
⎛
⎝

⎞
⎠ for i ≥ 0.

Definition 2.8 (Karimi et. al., 2016) n -th Central Graph 

Let G be a group and Z
n

G( ) the n -th term of upper central series 
of 

G . The n -th central graph of G , denoted by Γ
Z

n G( ) is a graph 

with vertex set containing all elements of G and two vertices x and 
y

are adjacent if and only if xy ∈Z
n

G( ) . If n = 1 , then Γ
Z

1 G( ) is 

the center graph. 

Proposition 2.4 (Karimi et. al., 2016) 
Let G

1
be a dihedral group of order 6, 

G
1
= a, b : a3 = b2 = 1, bab = a −1 . Then the n -th central graph of 

G
1
, Γ

Z

n G
1

( ) , is a graph with four isolated vertices and one edge as 
follows: 

Fig. 1 The n -th Central Graph of G
1
, Γ

Z

n G
1

( )
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Proposition 2.5 (Balakrishnan et. al., 2016) 
Let G

1
be a dihedral group of order 6, 

G
1
= a, b : a3 = b2 = 1, bab = a −1 . The center graph of G

1
, 

Γ
Z

1 G
1

( ) , is a graph with four isolated vertices and one edge as in 

Figure 1.  
Proposition 2.6 (Karimi et. al., 2016) 
Let G

2
be a dihedral group of order 8, 

G
2
= a, b : a 4 = b2 = 1, bab = a −1 . Then the n -th central graph of 

G
2

, Γ
Z

n G
2

( ) , is a complete graph with 8 vertices as shown in Figure 
2: 

	

Fig. 2 The n -th Central Graph of G
2

, Γ
Z

n G
2

( )
Proposition 2.7 (Karimi et. al., 2016) 
Let G

2
be a dihedral group of order 8, 

G
2
= a, b : a 4 = b2 = 1, bab = a −1 . The center graph of G

2
, 

Γ
Z

1 G
2

( ) , is a graph with four edges as shown in Figure 3. 

Fig. 3 The Center Graph of G
2

, Γ
Z

1 G
2

( )
The aim of this paper is to compute the independence polynomial 

of four graphs: Γ
Z

n G
1

( ) , Γ
Z

1 G
1

( ) , Γ
Z

n G
2

( ) and Γ
Z

1 G
2

( ) . 

MAIN RESULTS 

This section presents the results of this research. The 

independence polynomial of the graphs Γ
Z

n G
1

( ) , Γ
Z

1 G
1

( ) , Γ
Z

n G
2

( )
and Γ

Z

1 G
2

( ) are computed and presented. 

The Independence Polynomial of the n-th Central Graph of 
Some Dihedral Groups 

Based on the definitions, theorems and propositions mentioned in 
the previous section, the following results are obtained. The first 

theorem presents the independence polynomial of the n -th central 

graph of G
1
. 

Theorem 3.1 
Let G

1
be a dihedral group of order 6, 

G
1
= a, b : a3 = b2 = 1, bab = a −1 . Then the independence 

polynomial of the n -th central graph of G
1
, Γ

Z

n G
1

( ) , is 

I Γ
Z

n G
1

( ); x( ) = 1+ 6x + 14x 2 + 16x 3 + 9x 4 + 2x 5 . 

Proof The graph Γ
Z

n G
1

( ) has the independence number 

α Γ
Z

n G
1

( )( ) = 5 . Based on the graph in Figure 1, there are two 

vertex sets of size 5 which are 1, a, b, ab, a 2b{ } and 

1, a 2 , b, ab, a 2b{ } . The vertex sets of size 4 are 1, b, ab, a 2b{ } , 

1, a, b, ab{ } , 1, a 2 , b, ab{ } , 1, a, ab, a 2b{ } , 1, a 2 , ab, a 2b{ } , 

1, a, b, a 2b{ } . 1, a 2 , b, a 2b{ } , b, a, ab, a 2b{ } and 

b, a 2 , ab, a 2b{ } . There are 16 vertex sets of size 3 and 14 vertex sets 

of size 2. And the vertex sets of size one are each set containing each 

vertex of G
1

denoted as 1 , a{ } , a 2{ } , b{ } , ab{ } and a 2b{ } . 

Hence by Definition 2.4, 

I  Γ
Z

n G
1

( ); x( ) =
k=0

5

∑c
k
x k

	 						 = c
0
x 0 + c

1
x1 + c

2
x 2 + c

3
x 3 + c

4
x 4 + c

5
x 5

	 	 = 1+ 6x + 14x 2 + 16x 3 + 9x 4 + 2x 5 .
☐ 

Next theorem shows the independence polynomial of the center graph 

of G
1
. 

Theorem 3.2 
Let G

1
be a dihedral group of order 6, 

G
1
= a, b : a3 = b2 = 1, bab = a −1 . Then the independence 

polynomial of the center graph of G
1
, Γ

Z

1 G
1

( ) , is 

I Γ
Z

1 G
1

( ); x( ) = 1+ 6x + 14x 2 + 16x 3 + 9x 4 + 2x 5 . 

Proof  By Proposition 2.5, the center graph of G
1

is the same as the 

n -th central graph of G
1
. Hence, the proof follows from the proof of 

Theorem 3.1.                  ☐	

Then, the following theorem is the independence polynomial of the 

n -th central graph of G
2

. 

Theorem 3.3 
Let G

2
be a dihedral group of order 8, 

G
2
= a, b : a 4 = b2 = 1, bab = a −1 . Then the independence 

polynomial of the n -th central graph of G
2

, Γ
Z

n G
2

( ) , is 

I Γ
Z

n G
2

( ); x( ) = 1+ 8x . ☐
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Proof Since Γ
Z

n G
2

( ) ≅ K
8

, we have I Γ
Z

n G
2

( ); x( ) ≅ I K
8
; x( ) . 

Hence, by Proposition 2.2, we obtain I Γ
Z

n G
2

( ); x( ) = 1+ 8x .   ☐                 

And lastly, the theorem below is the independence polynomial of the 

center graph of G
2

. 

Theorem 3.4 
Let G

2
be a dihedral group of order 8, 

G
2
= a, b : a 4 = b2 = 1, bab = a −1 . Then the independence 

polynomial of the center graph of G
2

, Γ
Z

1 G
2

( ) , is 

I Γ
Z

1 G
2

( ); x( ) = 1+ 8x + 24x 2 + 32x 3 + 16x 4 . 

Proof Note that Γ
Z

1 G
2

( ) ≅ K
2
∪ K

2
∪ K

2
∪ K

2
. From Proposition 

2.2, we have that I K
2
; x( ) = 1+ 2x . Therefore by Theorem 2.1, 

I Γ
Z

1 G
2

( ); x( ) = 1+ 2x( )4

= 1+ 8x + 24x 2 + 32x 3 + 16x 4 .         ☐ 

CONCLUSION 

In this paper, the independence polynomial of the n -th central 
and center graph of some dihedral groups are computed. For the group 

G
1
, the independence polynomial of its n -th central graph is 

I Γ
Z

n G
1

( ); x( ) = 1+ 6x + 14x 2 + 16x 3 + 9x 4 + 2x 5 and when n = 1 , 

the independence polynomial of its center graph is also 

I Γ
Z

1 G
1

( ); x( ) = 1+ 6x + 14x 2 + 16x 3 + 9x 4 + 2x 5 . For the group 

G
2

, the independence polynomial of its n -th central graph is 

I Γ
Z

n G
2

( ); x( ) = 1+ 8x since it is a complete graph with 8 vertices, 

K
8
, and when n = 1 , the independence polynomial of its center graph 

is I Γ
Z

1 G
2

( ); x( ) = 1+ 8x + 24x 2 + 32x 3 + 16x 4 .  
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