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Abstract. Let G be a metacyclic 2-group.  The probability that two random elements commute in G is the quotient of the 
number of commuting elements by the square of the order of .G   This concept has been generalized and extended by several 
authors.  One of these extensions is the probability that an element of a group fixes a set, where the set consists of all subsets of 
commuting elements of G of size two that are in the form ( ), ,a b where a and b commute and ( )lcm , 2.a b = In this paper, 

the probability that a group element fixes a set is found for metacyclic 2-groups of negative type of nilpotency class at least two.  
The results obtained on the size of the orbits are then applied to graph theory, more precisely to generalized conjugacy class 
graph. 

Keywords: Commutativity degree, conjugacy class graph, graph theory.
PACS: 02.10Ox; 02.20-a.

INTRODUCTION 

Throughout this paper, Γ  denotes a simple undirected graph and G denotes a finite non-abelian group. In the 
following, a brief description about commutativity degree is given.  

The probability that a pair of elements x and , selected randomly from a group , commute is called the 
commutativity degree of ,  and was first introduced in 1944 [1]. This concept since then has been generalized and 
extended by several authors. One of these generalizations states the probability that a group element fixes a set, 
which was extended by Omer et al. [2] in 2013. 

Next, we discuss some fundamental concepts in graph theory.  
The first appearance of graph theory was in 1736 when Leonard Euler considered the Konigsberg bridge 

problem. Euler solved this problem by drawing a graph with points and lines. Years later, the usefulness of graph 
theory has been proven in a large number of diverse fields. 

The following are some basic concepts in graph theory that are needed in this study. These concepts can be found 
in the references ([3], [4]). 

A graph Γ  is a mathematical structure consisting of two sets, namely vertices and edges, which are denoted by 
( )V Γ and ( )E Γ , respectively. The graph is called directed if its edges are identified with ordered pair of vertices; 

otherwise, it is called undirected. Two vertices are adjacent if they are linked by an edge.  A complete graph on 
vertices, denoted by ,nK  is a graph where each ordered pair of distinct vertices is adjacent. The graph  is said to be 
null  if there are no vertices in .Γ

In 1990, a new graph which is related to conjugacy class was introduced by Bertram et al. [6]. The vertices of 
this graph are non central conjugacy classes i.e.   where ( )K G is the number of conjugacy 

classes of the group  and ( )Z G is the center of .G  A pair of vertices of this graph is connected by an edge if their 
cardinalities are not coprime.  

In 2013, Omer et al. [7] extended the work on the conjugacy class graph by introducing a generalized conjugacy 
class graph, whose vertices are non-central orbits under group action on a set. 

Next, we discuss the classification of metacyclic p-groups as proposed by Beuerle [8]. 
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In 2005, Beuerle classified the metacyclic p-groups to metacyclic p-groups of nilpotency of class two and 
metacyclic p-groups of nilpotency class at least three. Based on Beuerle’s classification, the metacyclic p-groups of 
nilpotency class two are partitioned into two families of non-isomorphic p-groups, stated as follows: 

( ) [ ]2 2 21  , : 1, 1, , , where , , , 2 , 1.G a b a b a b a
α α λ

α β λ α λ β λ
−

≅ = = = ∈ ≥ ≥ ≥�

( ) [ ]4 2 22  , : 1, , ,G a b a b b a a−≅ = == a quaternion group of order 8, 8.Q
In addition, the metacyclic 2-groups of negative type of class at least three are partitioned into eight families [8]. 

The following are some of the negative types which had been considered in the scope of this research: 

( ) [ ]12 2 2 23  , : 1, , , , where 3.G a b a b a b a a
α α

α
− −≅ = = = ≥

( ) [ ]2 2 24  , : 1,  , , where  3,G a b a b b a a
α

α−≅ = = = ≥

( ) [ ] 12 2 2 25  , : 1, , , wher  3,G a b a b b a a e
α α

α
− −≅ = = = ≥

( ) [ ]2 2 26  , : 1, 1, , , where 3, 1,G a b a b b a a
α β

α β−≅ = = = ≥ >

( ) [ ] 12 2 2 27  , : 1, , , where 3, 1,G a b a b b a a
α β α

α β
− −≅ = = ≥ >=

( ) [ ]12 2 2 2 28  , : 1,  , , , where 1, 1,G a b a b a b a a
α β α α γ

α γ β λ
− − −≅ = − > >= = >

( ) [ ]2 2 2 29  , : 1,  1, , , where 1.G a b a b b a a
α β α γ

α γ
− −≅ = = = − >

( ) [ ]12 2 2 210  , : 1,  , , , where 3, 1.G a b a b a b a a
α β α

α β
− −≅ = = = ≥ >

This paper is divided into three sections. The first section focuses on some background topics in graph theory 
and algebra, while the second section provides some earlier and  recent publications that are related to the 
probability that a group element fixes a set and conjugacy class graph.  In the third section, we present our results on 
the probability that a metacyclic 2-group element fixes a set and determine the conjugacy class graphs of the 
metacyclic 2-groups of negative type of class at least three.

PRELIMINARIES 

This section presents some works related to the probability that an element of a group fixes a set and graph 
theory. We commence with brief information about the probability that a group element fixes a set, followed by 
some related works on graph theory, more precisely on graphs related to conjugacy classes.  

In 2013, Omer et al. [2] introduced the probability that a group element fixes a set.  The following theorem is 
used in this paper. 

Theorem 1 [2] : Let G be a finite group. Let S be a set of elements of G of size two in the form of (a, b) where a and 
b commute and lcm(|a|, |b|) = 2. Let Ω  be the set of all subsets of commuting elements of G of size two and G acts 

on .Ω  Then the probability that an element of a group fixes a set is given by: ( ) ( )
,G

K
P

Ω
Ω =

Ω
where ( )K Ω is the 

number of orbits of Ω  in G. 

The work in [2] has then been extended by finding the probability for some finite non-abelian groups, including 
dihedral groups, quaternion groups, symmetric groups and alternating groups [2], [9] and [10]. In this study, the 
probability that a metacyclic 2-group element fixes a set is computed. The results obtained are then connected to 
graph theory by using the orbits obtained under group acting on a set to  conjugacy class graphs 

Some related works on conjugacy class graph are also discussed in this paper. Bianchi et al. [11] studied the 
regularity of the graph related to conjugacy classes and provided some results. In 2005, Moreto et al. [12] classified 
the groups in which conjugacy class sizes are not coprime for any five distinct classes. You et al. [13] also classified 
the groups in which conjugacy classes are not set-wise relatively prime for any four distinct classes. Moradipour et 
al. [14] used the graph related to conjugacy classes to find some graph properties of some finite metacyclic 2-
groups. 
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Recently, Omer et al. [6] generalized the conjugacy class graph by defining the generalized conjugacy class 
graph whose vertices are non-central orbits under group action on a set. The following is the definition of the 
generalized conjugacy class graph 

Definition 1 [6]: Let G be a finite group and Ω  a subset of G. Let A be the set of commuting element in Ω  , i.e 
{ }: , .g g g Gω ω ω∈Ω = ∈ Then, the generalized conjugacy class graph c

G
ΩΓ is defined as a graph whose vertices are 

non-central orbits under group action on a set, that is ( ) ( ) .c
GV K AΩΓ = Ω − Two vertices 1ω  and 2ω  in c

G
ΩΓ  are 

adjacent if their cardinalities are not coprime, i.e gcd( 1ω , 2ω ) ≠ 1. 
In addition, the generalized conjugacy class graph is determined for the symmetric groups and alternating groups 

[8]. 

RESULTS AND DISCUSSION  

This section consists of two parts. The first part focuses on the probability that an element of a metacyclic 2-
group fixes a set, whereas the second part relates the obtained results to the generalized conjugacy class graph. 
Throughout this section, let S be a set of elements of G of size two in the form of ( ), ,a b  where a and b commute 

and ( )lcm , 2.a b =  Let  Ω be the set of all subsets of commuting elements of G of size two. 

The Probability that a Metacyclic 2-Group Element Fixes a Set 

In this section, the probability that a group element fixes a set is found for metacyclic 2-groups of negative type 
of nilpotency class at least three, starting with type (3). 
Theorem 2: Let G be a group of type ( ) [ ]12 2 2 23 , , : 1, , , , where 3.G a b a b a b a a

α α
α

− −≅ = = = ≥  If G acts on Ω

by conjugation, then  ( ) 4 .
11GP Ω =

Proof: If G acts on Ω  by conjugation, then there exists : Gψ Ω× → Ω  such that ( ) 1,g g gψ ω ω ω−= ∈ Ω and

.g G∈  Thus, the elements of Ω  are stated as follows: There is only one element in the form of ( )121,a
α−

, four 

elements are in the form of ( )321, ,0 2
i

a b i
α α−

≤ ≤ , where i is odd, four elements are in the form of 

( )1 32 2, ,0 2
i

a a b i
α α α− −

≤ ≤ where i is odd and two elements are in the form of ( )3 3 12 2 2, ,0 2
i i

a b a b i
α α α α− − −+ ≤ ≤ where 

i is odd. From this, it follows that 11.Ω =  If G acts on Ω  by conjugation, then ( ) 1cl , , .g g g Gω ω ω−= ∈ Ω ∈  The 

orbits under the action of G on Ω  can be described as follows: One orbit of ( ){ }321, , 0 2
i

a b i
α α−

≤ ≤ of size four 

where i is odd, one orbit is in the form ( ){ }1 32 2, ,0 2
i

a a b i
α α α− −

≤ ≤ of size four where i is odd, one orbit is in the 

form of ( ){ }3 3 12 2 2, ,0 2
i i

a b a b i
α α α α− − −+ ≤ ≤  of size two and one orbit is in the form ( ){ }121, .a

α −
 Therefore, there are 

four orbits. Using Theorem 1, the probability that an element of a group fixes a set in this case is equal to 4 .
11

 The 

proof is thus completed. 

Theorem 3: Let G be a group of type ( ) [ ]2 2 24 , , : 1,  , , where  3.G a b a b b a a
α

α−≅ = = = ≥  If G acts on Ω by 

conjugation, then  ( ) 4 .
11GP Ω =
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Proof: The proof is similar to the proof of Theorem 2. 
Theorem 4: Let G be a group of type ( ) [ ] 12 2 2 25 , , : 1, , , wher  3.G a b a b b a a e

α α
α

− −≅ = = = ≥  If G acts on Ω by 
conjugation, then  

( )
7 , if 3,
21
2 ,  otherwise.
3

GP
α =

Ω =

Proof: In the case that α is equal to 3, the elements of Ω  are stated as follows: One element is in the form of 

( )121,a
α−

, there are 2α elements in the form of ( )1, ,0 2 ,ia b i α≤ ≤ there are 2α  elements in the form of 

( )12 , ,0 2 ,ia a b i
α α−

≤ ≤  and 12α − elements in which ω ∈ Ω   are in the form of ( )12, ,0 2 ,i ia a b i
α α−+ ≤ ≤  from 

which it follows 1 12 2 1.α α+ −Ω = + +  Since the action here is by conjugation, thus 

( ) { }1cl : , .g g g Gω ω ω −= ∈ Ω ∈  Therefore, the orbits under group action on Ω  are described as follows: There is 

one orbit in the form of ( ){ }1, ,0 2ia b i α≤ ≤  of size 12α − , where i is even and one orbit in the form 

( ){ }1, ,0 2ia b i α≤ ≤ where i is odd. In addition, there is one orbit in the form of ( ){ }12 , ,0 2ia a b i
α α−

≤ ≤ having 

size 12α −  where i is even, one orbit is in the form of ( ){ }12 , ,0 2ia a b i
α α−

≤ ≤  where i is odd, one orbit is in the 

form of ( ){ }121,a
α −

and two orbits are in the form of ( ){ }12, ,0 2i ia a b i
α α−+ ≤ ≤  of size two for both cases of i (even 

and odd). From this, it follows that, the number of orbits is seven. Using Theorem 1, ( ) 7 .
21GP Ω =  However, when 

3,α >  the elements of Ω  are described as follows: One element in the form of ( )121, ,a
α−

two elements are in the 

form of ( )1, ,0 2 ,ia b i α≤ ≤ two elements are in the form of ( )12 , ,0 2 ,ia a b i
α α−

≤ ≤ and one element is in the form 

of ( )12, ,b a b
α−

in which it follows that 6.Ω = Since the action here is by conjugation, thus there are four orbits. 

Using Theorem 1, the probability that a group element fixes a set, ( ) 2
3GP Ω = , thus the proof follows. 

Next, the probability that a metacyclic 2-group element fixes a set is computed for groups of types (6), (7) and 
(8), respectively.  

Theorem 5: Let G be a group of type ( ) [ ]2 2 26 , , : 1, 1, , , where 3, 1.G a b a b b a a
α β

α β−≅ = = = ≥ >  If G acts on 
Ω by conjugation, then  

( )
1, if 3,
2 ,   otherwise.
3

GP
α =

Ω =

Proof: If 3α = and G acts on Ω  by conjugation, then there exists : Gφ Ω× → Ω such that ( ) 1,g g gφ ω ω ω−= ∈ Ω

and .g G∈  The elements of  Ω are described as follows: There are two elements in the form of 

( )1 12 21, ,0 2 ,ia b i
α β α− −

≤ ≤ two elements are in the form of ( )1 1 12 2 2, ,0 2 ,ia a b i
α α β α− − −

≤ ≤  one element is in the form 

of ( )1 1 12 2 2, ,b a b
β α β− − −

and one element is in the form of ( )121, .a
α−

 Thus 6.Ω =  If G acts on Ω  by conjugation, then 
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( ) { }1cl : , .g g g Gω ω ω −= ∈ Ω ∈  Since there are six different types of elements in ,Ω  therefore the number of 

orbits is the same as .Ω Using Theorem 1, thus ( ) 1.GP Ω =  However, in the case that 3,α > then the elements of 

Ω  are six and have the following forms. Two elements are in the form of ( )1 12 21, ,0 2 ,ia b i
α β α− −

≤ ≤ two elements 

are in the form of ( )1 1 12 2 2, ,0 2 ,ia a b i
α α β α− − −

≤ ≤  one element is in the form of ( )1 1 12 2 2,b a b
β α β− − −

 and one element is 

in the form of ( )121, .a
α−

Thus, when G acts on Ω  by conjugation, ( )GP Ω is similar to the second part of Theorem 

4. The proof then follows.  

Theorem 6: Let G be a group of type ( ) [ ] 12 2 2 27 , , : 1, , , where 3, 1.G a b a b b a a
α β α

α β
− −≅ = = = ≥ >  If G acts 

on Ω by conjugation, then  

( )
1, if 3,
2 ,  otherwise.
3

GP
α =

Ω =

Proof: The proof is similar to the proof  of Theorem 5.  
Theorem 7: Let G be a group of type ( ) [ ]12 2 2 2 28 , , : 1,  , , , where 1,G a b a b a b a a

α β α α γ
α γ

− − −≅ = = = − >  and 

1.β γ> > If G acts on Ω by conjugation, then  ( ) 2 .
3GP Ω =

Proof: There are six elements of ,Ω  divided as follows: Two elements are in the form of 

( )2 12 21, ,0 2 ,ia b i
α β α− −

≤ ≤ where i is odd, two elements are in the form of ( )1 2 1 12 2 2 2, ,0 2 ,ia a b i
α α α β α− − − −+ ≤ ≤ where 

i is odd, one element is in the form of ( )121,a
α−

and one element is in the form of ( )1 2 1 12 2 2 2, .b a b
β α α β− − − −+ By 

conjugate action, there are four orbits. The proof then follows. 
Theorem 8: Let G be a group of type ( ) [ ]2 2 2 29 , , : 1,  1, , , where 1.G a b a b b a a

α β α γ
α γ

− −≅ = = = − >  If G acts 
on Ω by conjugation, then   

( )
1, if 3,
2 ,  otherwise.
3

GP
α =

Ω =

Proof: The proof is similar to the proof of Theorem 5. 

Next, the probability that a metacyclic 2-group element fixes a set is obtained for the group of type (9) and (10). 
Theorem 9: Let G be a group of type ( ) [ ]12 2 2 210 , , : 1,  , , , where 3, 1.G a b a b a b a a

α β α
α β

− −≅ = = = ≥ > If G

acts on Ω by conjugation, then  ( ) 2 .
3GP Ω =

Proof: The elements of Ω are described as follows: One element is in the form of ( )121, ,a
α−

two elements are in the 

form of ( )2 12 21, ,0 2ia b i
α β α− −

≤ ≤ where i is odd, two elements are in the form of 

( )1 2 1 12 2 2 2, ,0 2 ,ia a b i
α α α β α− − − −+ ≤ ≤ where i is odd, and one element is in the form of ( )1 1 2 1 12 2 2 2 2, ,a b a b

α β α α β− − − − −+

from which it follows 6.Ω = Since G acts on Ω  by conjugation, thus there are four orbits. Using Theorem 1, 

( ) 4 2 .
6 3GP Ω = = The proof is then completed. 
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Next, the results are obtained; more specifically the sizes of orbits, are applied to the generalized conjugacy class 
graph. 

Generalized Conjugacy Class Graph 

This section discusses the results on the sizes of the orbits which are related to generalized conjugacy class graph 
(refer to Definition 1). The following theorem is key to getting immediate results from the probability that a group 
element fixes a set to generalized conjugacy class graph. 

Theorem 10: Let G be a finite non-Abelian group and Ω  the set of all subsets of commuting elements of G of size 
two. If G acts on Ω  by conjugation and ( ) 1,GP Ω = then the generalized conjugacy class graph, c

G
ΩΓ  is null.  

Proof: If ( ) 1,GP Ω =  then based on Theorem 1, ( ) .K Ω = Ω  Thus, for all ( ),  cl .ω ω ω∈ Ω = By Definition 1, the 

number of vertices is ( ) 0.c
GV ΩΓ = Thus the graph is null i.e 0.c

G KΩΓ =

Now, the generalized conjugacy class graph of metacyclic 2-groups is found, starting with the group of type (3). 
Theorem 11: Let G be a group of type ( ) [ ]12 2 2 23 , , : 1, , , , where 3.G a b a b a b a a

α α
α

− −≅ = = = ≥  If G acts on 

Ω by conjugation, then  3.c
G KΩΓ =

Proof: According to Theorem 2, there are four orbits. Among these orbits, two of them have size four, one orbit has 

size two and one orbit has size one. By Definition 1, ( ) 3.c
GV ΩΓ =  By the vertices adjacency of ,c

G
ΩΓ  two of the 

vertices 1ω  and 2ω are adjacent if their cardinalities are not coprime (i.e gcd ( )1 2, 1ω ω ≠ ) hence c
G
ΩΓ consists of a 

complete graph of 3.K  Figure 1 shows the complete graph of three vertices. 

         FIGURE 1: Complete graph of K3

Theorem 12: Let G be a group of type ( ) [ ]2 2 24 , , : 1,  , , where  3.G a b a b b a a
α

α−≅ = = = ≥  If G acts on Ω by 

conjugation, then  3.c
G KΩΓ =

Proof: The proof is similar to the proof in Theorem 11. 
Theorem 13: Let G be a group of type ( ) [ ] 12 2 2 25 , , : 1, , , wher  3.G a b a b b a a e

α α
α

− −≅ = = = ≥  If G acts on Ω
by conjugation, then   

6

3

, if 3,
,   otherwise.

c
G

K
K

αΩ =
Γ =

Proof: Based on Theorem 4 when 3,α =  there are seven orbits, four of them have size four and two have size two. 

Since two vertices are adjacent if their cardinalities are not coprime i.e gcd(4, 2) ≠ 1, hence c
G
ΩΓ  consists of one 

complete component of 6.K   If 3,α >  the proof is similar to the proof of Theorem 11. 

( )12 , ia a b
α − ( )1, ia b

( )12 ,i ia a b
α −+
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Theorem 14: Let G be a group of type ( ) [ ]2 2 26 , , : 1, 1, , , where 3, 1.G a b a b b a a
α β

α β−≅ = = = ≥ >  If G acts 
on Ω by conjugation, then   

0

2

, if 3,
,   otherwise.

c
G

K
K

αΩ =
Γ =

Proof: Based on Theorem 5, when 3,α =  the probability that a group element fixes a set, ( ) 1.GP Ω =  Using 

Theorem 10, the generalized conjugacy class graph in this case is null. If 3,α >  the number of vertices in c
G
ΩΓ  is 

three. Since two vertices are connected if they are not coprime, thus c
G
ΩΓ consists of one complete component of 2K

and one isolated vertex. The proof then follows. 
Theorem 15: Let G be a group of type ( ) [ ] 12 2 2 27 , , : 1, , , where 3, 1.G a b a b b a a

α β α
α β

− −≅ = = = ≥ >  If G acts 
on Ω by conjugation, then  

0

2

, if 3,
,   otherwise.

c
G

K
K

αΩ =
Γ =

Proof: The proof is similar to the proof in Theorem 14. 
Theorem 16: Let G be a group of type ( ) [ ]12 2 2 2 28 , , : 1,  , , , where 1,G a b a b a b a a

α β α α γ
α γ

− − −≅ = = = − >  and 

1.β γ> > If G acts on Ω by conjugation, then  2.c
G KΩΓ =

Proof: According to Theorem 7 and Definition 1, the number of vertices in c
G
ΩΓ  is three. Based on vertices 

adjacency, there is only one complete component of 2K and one isolated vertex. The proof is thus completed. 

Theorem 17: Let G be a group of type ( ) [ ]2 2 2 29 , , : 1,  1, , , where 1,G a b a b b a a
α β α γ

α γ
− −≅ = = = − >  and 

1.β γ≥ > If G acts on Ω by conjugation, then   

0

2

, if 3,
,   otherwise.

c
G

K
K

αΩ =
Γ =

Proof: The proof is similar to the proof of Theorem 14. 
Theorem 18: Let G be a group of type ( ) [ ]12 2 2 210 , , : 1,  , , , where 3, 1.G a b a b a b a a

α β α
α β

− −≅ = = = ≥ >  If G

acts on Ω by conjugation, then  2.c
G KΩΓ =

Proof: According to Theorem 9, there are two orbits having size two. According to Definition 1, c
G
ΩΓ  consists of a 

complete component of 2K and one isolated vertex, namely ( )1 1 2 1 12 2 2 2 2, .a b a b
α β α α β− − − − −+ The proof is then complete. 

CONCLUSION 

In this paper, the probability that a group element fixes a set is found for metacyclic 2-groups of negative type of 
nilpotency class at least three. The results obtained on the sizes of the orbits are then applied to the generalized 
conjugacy class graph. 
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