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 Sticker systems have been introduced by Kari in 1998as an abstract computational 
model which uses the Watson-Crick complementary principle of DNA molecules: 

starting from the incomplete double stranded sequences and iteratively using sticking 

operations, complete double stranded sequences are obtained. It is known that sticker 
systems with finite sets of axioms and sticker rules generate only regular languages. 

Hence, different types of restrictions have been considered to increase the 

computational power of sticker systems. Recently, probabilistic sticker systems have 
been introduced where the probabilities are initially associated with the axioms, and the 

probability of a generated string is computed by multiplying the probabilities of all 

occurrences of the initial strings in the computation of the string. In this paper, some 
properties of probabilistic one-sided sticker systems, which are special types of 

probabilistic sticker systems, are investigated. We prove that probability restriction on 

one-sided sticker systems can increase the computational power of the languages 
generated. 
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INTRODUCTION 

 

 One of the early theoretical proposals for DNA based computation was given by Head in 1987, known as 

the splicing systems. There is in fact another method of DNA computing, known as the sticker systems. A sticker 

system is a model of the techniques used by Adleman in his experiment of computing a Hamiltonian path in a 

graph by using DNA molecules [1]. The structure of DNA is a double helix (helicoidal) which is composed of 

four nucleotides: A (adenine), C (cytosine), G (guanine), and T (thymine), which is paired as A-T, C-G 

according to Watson-Crick complementary[2]. 

 The concept of sticker systems as a language generating model based on sticker operations was first 

proposed by Kari [2].The axioms and strings generated by a sticker system are considered as encoded models of 

single and double stranded DNA molecules. Moreover, the sticker operations have the advantages over splicing 

operations used in splicing systems because the sticker operations require no strands extension and use no 

enzymes [3].In sticker systems, the initial sequences of DNA are prolonged to the left and right, producing 

computations of possible arbitrary length and the process stop when a complete double stranded sequence is 

obtained and no sticky ends exist [2]. 

 One-sided sticker systems were first considered in [2]. When forming new complete double stranded 

sequences, the initial strands called axioms and well started sequences are utilized and prolonged either to the 

left or to the right direction by the process of the sticker operation  [4]. Starting from the axiom and 

iteratively using the operation of sticking, strands are prolonged in order to obtain a complete double stranded 

sequence.In probabilistic sticker systems, the probabilities are initially associated with the axioms, and the 

probability of a generated string is computed by multiplying the probabilities of all occurrences of the initial 

strings in the computation of the string. 

 Sincesticker systems with finite sets of axioms and sticker rules generate only regular languageswithout 

restrictions [5], monoids[6] and permutation groups [7] had been associated to generate more powerful 

languages than regular languages. However, the languages produced only up to context freeCF languages. 

Hence, probability has been introduced to increase the computational power of the sticker language generated 

up to recursively enumerable RE languages. In probabilistic sticker systems, the probabilities are initially 
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associated with the axioms, and the probability of a generated string is computed by multiplying the 

probabilities of all occurrences of the initial strings in the computation of the string. Probabilistic sticker systems 

are suitable models for stochastic processes, and on the other hand, the use of different cut-points with the 

languages generated by probabilistic sticker systems allows the producing of non-regular languages [8]. 

 In this paper, we consider probabilistic sticker systems to introduce a new variant of sticker system, called 

probabilistic one-sided sticker systems. In such system, the probability p(z) of the string z generated from two 

strings x and y is calculated from the probability p(x) and p(y) according to the operation * defined on the 

probabilities, i.e. p(z) = p(x) * p(y). Then the language generated by a probabilistic one-sided sticker system 

consists of all strings generated by the one-sided sticker systems whose probabilities are greater than (or smaller 

than, or equal to) some previously chosen cut-points.  

 In this paper, some necessary definitions ofsticker system and probabilistic sticker system are stated. Next, 

the definitionsand some examples of probabilistic one-sided sticker systems are presented and some basic 

results concerning the generative power of probabilistic one-sided sticker systemsare established. The 

conclusion of this research is then discussed at the end of the paper.  

 

Preliminaries: 

 In this section, we recall some definitions of sticker system and probabilistic sticker system. 

 

Definition 1[2]: 

 A sticker system is a construct of 4-tuple 

( , , , ),V A D   

whereV is an alphabet, V V   is the symmetric relation in V , A is a finite subset of axioms ( ( ))W V


and 

D is a finite set of pairs ,
d u

B B  where 
d

B and 
u

B are finite subsets of lower and upper stickers of the forms 

#

V



 
 
 

 and 
#

V


 
 
 

, respectively. A language resulting from a sticker system is called a one-sided sticker 

language (OSSL) if for each pair ( , )u v D , we have either u  or v  . 

 

Definition 2[4]: 

 A sticker language (SL) is the language generated by a sticker system which consists of all strings formed 

by the set of upper strands of all complete strings derived from the axioms for which an exactly matching 

sequence of lower stickers can be found.  

 

 

Definition 3[8]: 

 

A probabilistic sticker system (pSS) is a 5-tuple 

𝛾 =  𝑉,𝜌,𝐴𝑝 ,𝐷𝑝 , 𝑝 , 

whereV is an alphabet, 𝜌 ⊆ 𝑉 × 𝑉is the symmetric relation in V, 𝐴𝑝 is a finite subset of axioms (𝑊𝜌 𝑉 ×

𝑝),𝐷𝑝  is a finite set of pairs [(𝐵𝑑 × 𝐵𝑢) × 𝑝] where 𝐵𝑑   and 𝐵𝑢are finite subsets of lower and upper stickers 

of the forms  
#
𝑉
 
+

 and  
𝑉
#
 
+

respectively and 𝑝 ∶ 𝑉∗ → [0, 1] is a probability function such that 

 𝑝 𝑥 = 1(𝑥 ,𝑝 𝑥 )∈𝐴𝑝 ,𝐷𝑝
. 

 

Definition 4[8]: 

 

The probabilistic sticker language is defined as 

𝑝𝑆𝐿 𝛾 = {𝑦 ∈ 𝑊𝐾𝑝(𝑉)| 𝑥, 𝑝 𝑥  
∗
  𝑦, 𝑝 𝑦  for 𝑥, 𝑝 𝑥  ∈ 𝐴𝑝}. 

 

 In order to increase the generative power of probabilistic sticker systems, we consider a threshold 

(cut-point) sub-segments and discrete subset of [0, 1] as well as real numbers in [0, 1]. 

 

Results: 

 In this section, some preliminary results regarding probabilistic one-sided sticker systems are discussed and 

proved. Here, OSSLandpOSSLdenote the families of languages generated by one-sided sticker system and 

probabilistic one-sided sticker systemrespectively.  
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Definition 5: Probabilistic One-Sided Sticker System (pOSSS) 

 

A probabilistic one-sided sticker system is a construct of 5-tuple 

( , , , , ),
p p p

V A D p   

whereV is an alphabet, V V   is the symmetric relation inV ,
p

A is a finite subset of axioms ( ( ) )W V p




and 
p

D is a finite set of pairs   ,
d u

B B p  where 
d

B  and 
u

B  are finite subsets of lower and upper 

stickers of the forms 
#

V



 
 
 

or
#

V


 
 
 

 respectively and 
*

: [0,1]p V  is a probability function such that 

 

 
,

( , )

1.

p p
x p x A D

p x



  

 

 

Definition 6: Probabilistic One-Sided Sticker Operation (pOSSO) 

 

For the axioms ( , ( ))
p

x p x A and [( , ( )),u p u ( , ( ))]
p

v p v D , 

   
*

, ( ) , ( )x p x y p y  

if and only if 

1) ( , ( )) [( , ( )), {( , ( )), ( , ( ))}]y p y u p u x p x v p v  and ( ) ( ) ( )p y p u p x v   . 

2) ( , ( )) [ {( , ( )), ( , ( ))}, ( , ( ))]y p y x p x u p u v p v  and ( ) ( ) ( )p y p x u p v   .  

 

 

Definition 7: Probabilistic One-Sided Sticker Language (pOSSL) 

 

 The language generated by the probabilistic one-sided sticker system is defined as  
*

( ) { ( ) | ( , ( ) ( , ( ))
p

pOSSL y WK V x p x y p y    for ( , ( )) }.
p

x p x A  

 

 The families of recursively enumerable and context-free languages are denoted by RE and CF respectively. 

Further we cite the results of our paper.  

 The next theorem shows that probabilistic one-sided sticker systems are more powerful than the usual 

one-sided sticker systems: 

 

Theorem 1: .OSSL pOSSL  

Proof: 

Consider a one-sided sticker system ( , , , )V A D  . Then the language generated by the sticker system 𝛾 is  

    
*

| ,  .OSSL z WK V x z x A      

Let  
1

, , , ,  
p p

V A D p  be a probabilistic one-sided sticker system where

   , | ,1  ,
p i i i

A x p x x A i n          , , , | , ,1 
p i i i i i i

D u p u v p v u v D i n    and   1 /
i

p m  for 

all   1  , , , ,i n x u v   then 

 
1

1

i

n

i
p 



 . 

 

The language generated by the probabilistic one-sided sticker system 𝛾1: 

 
1

( ,  * ) {  |
p

pSL z WK V      
*

,   x p x      ,  z p z for   ,   }
p

x p x A  where  

         
1 2 n

p z p x p p p      for
1 2

  , , ,
n p

D    . 

We define the threshold language generated by 𝛾1 as 𝑝𝑂𝑆𝑆𝐿 𝛾1, > 0 , then it is not difficult to see that 
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𝑂𝑆𝑆𝐿 𝛾 = 𝑝𝑂𝑆𝑆𝐿 𝛾1, > 0 . 
Next, some examples of probabilistic one-sided sticker languages are illustrated in the following.  

 

Example 1: 

Given a probabilistic one-sided sticker system  1 , , , ,
p p

V A D p  where 

 

 ,V a b , 

{( , ), ( , )}a a b b  , 

    2
,

28

a b
A

 


 
 
 

, 

          .
3 5 7 11

, , , , , , ,

28 28 28 28

a b
D

a a b b

   

 

       
       
       

 

  

 For the given sticker system, we start the computation with the axiom in A being attached to its 

complementary axiom from D. The first step of computation starts with prolongation to the right side and it is 

shown below:  

               2 5 2 5
, , , , .

28 28 28 28

a b a b

b b b b

  

  
 

     
         

 

 The computation is complete when a complete double strand sequence is obtained, that is when no sticky 

end exists in the string. Here, sticky end still exists from the first step. Therefore, the computation has to be 

continued until the double strand sequence is obtained.  

For this example, the second step of the computation is shown in the following:  

              .
2 5 11 2 5 11

, , , ,

28 28 28 28 28 28

a b b a b b

b b b b



  
   

           
                     

 

 To obtain a complete computation on the right side, the sticking operations have to follow the above steps. 

Now, to obtain a complete computation on the left side, the computation follows the steps below: 

               2 3 2 3
, , , , ,

28 28 28 28

a b a b

a a a a

  

  
 

     
         

 

             2 3 7 2 3 7
, , , , .

28 28 28 28 28 28

a b a a a b

a a a a



  
   

             
                         

 

By joining both stickers, the complete double strand string with the probability
2 3 7 5 11

28 28

n
  


    
    
    

is 

obtained. Then the language produced is   

2 3 7 5.112 2
( , ) {( , ) |

2 2
28 28 28

k m
k m

L p a b


 
     
     
     

, 1},k m  where
2 3 7 5.11

2 2
28 28 28

k m

p


 
     
     
     

  (1) 

 

 We can iteratively prolong a complete double strand DNA sequences to generate the general form of the 

language produced using the same sequences as done earlier.

 

We can produce a language of sticker system as 
2 2

( , ) { | 1}
n n

L p a b n   when the probability p is equal to 

2 3 7 5 11
.

28 28

n
  


    
    
    

 

 

From (1) and using the threshold properties, we can conclude the following: 

 

i :  0,     ,  0     ,L    REG
 

 

ii : 0, ( , 0) ( ) ,L L      REG
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iii :    2 3.7.5.11 2 2
{  |    1},  ,    | 1 ,

428 28

n
n n

n L a b n        
  

  
  

CF REG  

 

iv :      2 3.7.5.11
{  |    1},  ,    | 1  | 1     .

428 28

n
k m k m

n L a b k m a b m k           
  

  
  

CF REG    

 

Example 2: 

Given a probabilistic one-sided sticker system  
2

, , , ,
p p

V A D p  where 

 

 , ,V a b c , 

{( , ), ( , ), ( , )}a a b b c c  , 

2 3
, , ,

77 77

a c
A

 

           
          

           

 , 

              , ,
7 13

, , , , , , , , , .
5 11 17 19

77 77 77 77 77 77
D

a a

b a c

c c b

  

 

 



           
           
           

 

  

 For the given sticker system, we start the computation with the axiom in A being attached to its 

complementary axiom from D. In this example, there are two cases. The first step of each case of computation 

starts with prolongation to the right side and it is shown below. 

 

Case 1: For string 
2

,
77

a



      
     

     

, 

 

            2 5 2 5
, , , , .

77 77 77 77

a a

aa a a

 




 

     
         

 

 The computation is complete when a complete double strand sequence is obtained, that is when no sticky 

end exists in the string. Here, sticky end still exists from the first step. Therefore, the computation has to be 

continued until the double strand sequence is obtained.  

For this example, the second step of the computation is shown in the following:  

  2 5 13 2 5 13
, , , , .

77 77 77 77 77 77

a a a a

a a a a




   

                 
                                    

 

 To obtain a complete computation on the right side, the sticking operations have to follow the above steps. 

To obtain string
2k m

a b  we continue the computation as below: 

 2 5 13 11 2 5 13 11
, , , , ,

77 77 77 77 77 77 77 77

a a b a a b

a a a a 
     

                        
                                                   

 

 



2 5 13 11 19
, , ,

77 77 77 77 77

2 5 13 11 19
, .

77 77 77 77 77

a a b

a a b

a a b

a a b




   

   

               
                               

             
             

            

 

Hence, the complete double strand string with the probability
3

2 1
2 5 11 19 13

77 77 77

nn 
 


       
      
       

is obtained. 

Then the language produced is   2

2
( , ) , 1

k m
L p a b k m   where

2

2 1
2 5 13 11 19

77 77 77 77

k k m

p




   
         
        
         

.  
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Case 2: For string 
3

,
77

c



      
     

     

, 

            , , , , .
3 7 3 7

77 77 77 77

c c

c c c c

 




 

     
         

 

 The computation is complete when a complete double strand sequence is obtained, that is when no sticky 

end exists in the string. Here, sticky end still exists from the first step. Therefore, the computation has to be 

continued until the double strand sequence is obtained.  

For this example, the second step of the computation is shown in the following:  

  3 7 17 3 7 17
, , , , .

77 77 77 77 77 77

c c c c

c c c c




   

                 
                                    

 

 To obtain a complete computation on the right side, the sticking operations have to follow the above steps. 

To obtain string
2m r

b c we continue the computation as below: 

11 3 7 17 3 7 17 11
, , , , ,

77 77 77 77 77 77 77 77

b c c b c c

c c c c 
     

                         
                                                     

 

  19 3 7 17 11 2 5 13 11 19
, , , , .

77 77 77 77 77 77 77 77 77 77

b c c b c c

b c c b c c




       

                            
                                                           

 

Hence, the complete double strand string with the probability
3

2 1
3 7 11 19 17

77 77 77

nn 
 


       
      
       

is obtained. 

Then the language produced is   2

2
( , ) , 1

m r
L p b c m r    where

2

2 1
3 7 17 11 19

77 77 77 77

r r m

p




   
         
        
         

.  

Then, by joining both complete string from 

 

Case 1
2

2

2 1
2 5 13 11 19

,
77 77 77 77

k m

k k m

a b




  
        
        

         

and Case 2

2

2

2 1
3 7 17 11 19

,
77 77 77 77

m r

r r m

b c




  
        
        

         

, 

the language produced is  

 2 2 2

2
( , ) , , 1

k m r
L p a b c k m r   , where 

22 1

2 2

2.3 5 13 11.19

77 7777 77

mk k

p



    
      
       

      

2 1
7 17

77 77

r r 


   
   

    

. 

 

Using the threshold properties, we can conclude the following: 

 

i : 2 20, ( , 0) ( ) ,L L      REG  

ii : 2 20, ( , 0) ( ) ,L L      REG
 

iii :
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   2

2 2 1
2

2 2 2 2

2 2

77 77 77 77

2 3 5.7 11.19 13.17
1 ,    | 1 ,

n n
n n

n
n

n L a b nc  




      

       
       
       

CS REG  

 

iv :    2

2

2 2 2 2

2 2 1
2 22 3 5.7 11.19 13.1

77 77 77

7
1

77

,    |k>m>r 1

n n n
k m r

n a b cL  




     

       
       
       

   

     

   

22 2 2 2 2 2

2

2 2

22 22 2

   |k>r>m 1    |m>k>r 1    |m>r>k 1

   |r>k>m 1    |r>m>k 1 .

r rk m k m k m

k m k m

r

r r

c c ca b a b a b

a b cacb

     

    CS REG

 

 

From the examples, we obtain some propositions as stated below: 

 

Proposition 1: 

 For any probabilistic one-sided sticker system  the threshold language  , 0L   is the empty set, 

i.e.  , 0L      

 

Proposition 2: 

 If for each prolongation in a probabilistic one-sided sticker system  ,   1rp  , then every threshold 

language  ,L   with 0  is finite. 

 The language generated by probabilistic one-sided sticker system is up to the families of context-sensitive 

languages according to the Chomsky hierarchy, sincethe sticker operation does not contain the erasing rule 

which is needed to generate the recursively enumerable languages. Hence, 

 

Conjecture 1: .pOSSL  CS  

 

 From Conjecture 1 and example 2, the following conjecture shows that probabilistic one-sided sticker 

systems can generate some non-context-free languages: 

 

Conjecture 2: .pOSSL   CF  

 

Conclusion: 

 In this paper, the definition of a new restriction of one-sided sticker systems, namely probabilistic one-sided 

sticker systems, has been introduced. Here, some preliminary results on the generative power of one-sided 

sticker systems have also been established. It has been shown by the examples that the probabilistic extension of 

sticker systems can increase the computational power of sticker systems up to the context-sensitive languages. 

By increasing the computational power of the sticker system, the capability of generating DNA based computer 

is brighter. DNA based computers are important as it can run with high speed and the capability of memory 

information are enormous. Even though the probabilistic variants that have been proposed in this paper are not 

so much powerful (inferior) as compared to the other extended or restricted variants in the literature review, the 

probabilistic modification in one-sided sticker system is very useful in the study of stochastic and uncertainty 

processes. 
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