
A new variant of Petri net controlled grammars
Nurhidaya Mohamad Jan, Sherzod Turaev, Wan Heng Fong, and Nor Haniza Sarmin

Citation: AIP Conference Proceedings 1682, 040015 (2015); doi: 10.1063/1.4932488
View online: http://dx.doi.org/10.1063/1.4932488
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1682?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Parallel firing strategy on Petri nets: A review
AIP Conf. Proc. 1660, 050080 (2015); 10.1063/1.4915713

Watson-Crick Petri net languages with finite sets of final markings
AIP Conf. Proc. 1602, 876 (2014); 10.1063/1.4882587

Maximality‐Based Structural Operational Semantics for Petri Nets
AIP Conf. Proc. 1107, 269 (2009); 10.1063/1.3106484

Verification of biological models with Timed Hybrid Petri Nets
AIP Conf. Proc. 952, 287 (2007); 10.1063/1.2816633

Petri nets modeling for dynamic fuzzy anticipatory systems
AIP Conf. Proc. 517, 75 (2000); 10.1063/1.1291247

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

115.133.23.158 On: Fri, 11 Dec 2015 07:16:11

http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://scitation.aip.org/search?value1=Nurhidaya+Mohamad+Jan&option1=author
http://scitation.aip.org/search?value1=Sherzod+Turaev&option1=author
http://scitation.aip.org/search?value1=Wan+Heng+Fong&option1=author
http://scitation.aip.org/search?value1=Nor+Haniza+Sarmin&option1=author
http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4932488
http://scitation.aip.org/content/aip/proceeding/aipcp/1682?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4915713?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4882587?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.3106484?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2816633?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1291247?ver=pdfcov

A New Variant of Petri Net Controlled Grammars
Nurhidaya Mohamad Jana, Sherzod Turaevb, Wan Heng Fongc and

Nor Haniza Sarmina

aDepartment of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia,
81310 UTM Johor Bahru, Johor, Malaysia

bDepartment of Computer Science, Kulliyyah of Information and Communication Technology,
International Islamic University Malaysia, 53100 Kuala Lumpur, Malaysia

cIbnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia,
81310 UTM Johor Bahru, Johor, Malaysia

nurhidayamj@gmail.com, sherzod@iium.edu.my, fwh@utm.my, nhs@utm.my

Abstract. A Petri net controlled grammar is a Petri net with respect to a context-free grammar where the successful
derivations of the grammar can be simulated using the occurrence sequences of the net. In this paper, we introduce a new
variant of Petri net controlled grammars, called a place-labeled Petri net controlled grammar, which is a context-free
grammar equipped with a Petri net and a function which maps places of the net to productions of the grammar. The language
consists of all terminal strings that can be obtained by parallelly applying multisets of the rules which are the images of the
sets of the input places of transitions in a successful occurrence sequence of the Petri net. We study the effect of the different
labeling strategies to the computational power and establish lower and upper bounds for the generative capacity of place-
labeled Petri net controlled grammars.

Keywords: Petri net, context-free grammar, Petri net controlled grammar, computational power.
PACS: 87.14.gk

INTRODUCTION

Petri nets are “dynamic” bipartite directed graphs with two sets of nodes, called places and transitions [1], which
provide an elegant and powerful mathematical formalism for modeling concurrent systems and their behavior. Since
Petri nets successfully describe and analyze the flow of information and the control of action in such systems, they
can be suitable tools for studying the properties of formal languages. Petri nets have been widely used as language
generating/accepting tools (for instance, see [2,3]), and as regulation mechanisms for grammar systems [4],
automata [5], and grammars [6,7].

A Petri net controlled grammar is, in general, a context-free grammar equipped with a (place/transition) Petri net
and a function which maps transitions of the net to productions of the grammar. The language generated consists of
all terminal strings that can be obtained by applying the sequence of productions which is the image of an
occurrence sequence of the Petri net under the function. Several variants of Petri net controlled grammars have been
introduced and investigated.

For instance, the papers [8,9] introduced k-Petri net controlled grammars, and studied their properties including
generative power, closure properties, infinite hierarchies. A generalization of regularly controlled grammars was
considered in [10,11]: instead of a finite automaton, a Petri net is associated with a context-free grammar and it is
required that the sequence of applied rules corresponds to an occurrence sequence of the Petri net, i.e., to sequences
of transitions which can be fired in succession. Grammars controlled by the structural subclasses of Petri nets,
namely state machines, marked graphs, causal nets, free-choice nets, asymmetric choice nets and ordinary nets were
investigated in [12,13]. It was proven that the family of languages generated by (arbitrary) Petri net controlled
grammars coincide with the family of languages generated by grammars controlled by free-choice nets. Papers
[14,15] studied grammars controlled by (context-free, extended or arbitrary) Petri nets with place capacities. A Petri
net with place capacity regulates the defining grammar by permitting only those derivations where the number of
each nonterminal in each sentential form is bounded by its capacity. It was shown that several families of languages
generated by grammars controlled by extended context-free Petri nets with place capacities coincide with the family
of matrix languages of finite index.

In all above-mentioned variants of Petri net controlled grammars, the production rules of a core grammar are
associated only with transitions of a Petri net. Thus, it is also interesting to consider the place-labeling strategies

The 22nd National Symposium on Mathematical Sciences (SKSM22)
AIP Conf. Proc. 1682, 040015-1–040015-11; doi: 10.1063/1.4932488

© 2015 AIP Publishing LLC 978-0-7354-1329-0/$30.00

040015-1 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

115.133.23.158 On: Fri, 11 Dec 2015 07:16:11

with Petri net controlled grammars. Theoretically, it would complete the node labeling cases, i.e., we study the cases
where the production rules are associated with places of a Petri net, not only with its transitions. Moreover, the place
labeling enables us to consider parallel application of production rules in Petri net controlled grammars, which
allows the development of formal language based models for synchronized/parallel discrete event systems.

Informally, a place-labeled Petri net controlled grammar (a pPN controlled grammar for short) is a context-free
grammar with a Petri net and a function which maps places of the net to productions of the grammar. The language
consists of all terminal strings that can be obtained by parallelly applying the rules of multisets which are the images
of the sets of the input places of transitions in a successful occurrence sequence of the Petri net. In this paper, we
mainly study the effect of the place labeling strategies to the computational power, and establish the lower and upper
bounds for the families of languages generated by pPN controlled grammars.

This paper is organized as follows: the first section gives necessary definitions and results from the theories of
formal languages and Petri nets that are used in the sequel. The second section defines place-labeled Petri net
controlled grammars and illustrates the concept in examples. In the third section, the lower and upper bounds for the
families of languages generated by pPN controlled grammars are established. The effect of labelling strategies to the
computational power of pPN controlled grammars is presented in the fourth section. The fifth section discusses the
obtained results, open problems and possible topics for future research.

PRELIMINARIES

We assume that the reader is familiar with basic concepts of formal language theory and Petri nets. For details,
the reader is referred to [2, 4, 7, 12, 13, 14, 16, 17]. In this section we only recall some notions, notations and results
directly related to the current work.

Throughout the paper we use the following general notation. The symbol ∈ denotes the membership of an
element to a set while the negation of set membership is denoted by ∉. The inclusion is denoted by ⊆ and the strict
(proper) inclusion is denoted by .⊂ The empty set is denoted by .∅ The cardinality of a set X is denoted by .X

Grammars

Let Σ be an alphabet. A string over Σ is a sequence of symbols from the alphabet. The empty string is denoted by
λ and is of length 0. The set of all strings over the alphabet Σ is denoted by *.Σ A subset L of *Σ is called a
language. If 1 2 3w w w w= for some *

1 2 3, , ,w w w ∈Σ then 2w is called a substring of .w The length of a string w is
denoted by | |,w and the number of occurrences of a symbol a in a string w by | .|aw

A multiset over an alphabet Σ is a mapping �: Σ� . The alphabet Σ is called the basic set of the multiset π
and the elements of Σ is called the basic elements of the multiset .π A multiset π over 1 2{ , , }na a aΣ = … is
denoted by

1 2

1 1 2 2

() () ()

[, , , , , , , , ,].
n

n n

a a a

a a a a a a
π π π

π = … … … …

We also “abuse” the set-membership notation by using it for multisets. We write [, , ,]a a a a b∈ and

[, , ,].c a a a b∉ The set of all multisets over Σ is denoted by .⊕Σ
A context-free grammar is a quadruple (, , ,)G V R S= Σ where V and Σ are disjoint finite sets of nonterminal

and terminal symbols, respectively, *()R V V⊆ × ∪ Σ is a finite set of (production) rules and S V∈ is the start
symbol. Usually, a rule (,)A x is written as .A x→ A rule of the form A λ→ is called an erasing rule. A string

()x V +∈ ∪ Σ directly derives a string *() ,y V∈ ∪ Σ written as ,x y if and only if there is a rule r A Rα= → ∈
such that 1 2x x Ax= and 1 2.y x xα= The reflexive and transitive closure of is denoted by * . A derivation

using the sequence of rules 1 2 nr r rπ = is denoted by
π

 or
1 2

.
nr r r

 The language generated by G is defined by
* *() { }.L G w S w= ∈ Σ�

A matrix grammar is a quadruple (, , ,)G V M S= Σ where , , V SΣ are defined as for a context-free grammar, M
is a finite set of matrices which are finite strings over a set of context-free rules (or finite sequences of context-free

rules). The language generated by G is * *() { and }.L G w S w M
π

π= ∈ Σ ∈�

040015-2 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

115.133.23.158 On: Fri, 11 Dec 2015 07:16:11

The families of languages generated by matrix grammars without erasing rules and by matrix grammars with
erasing rules are denoted by MAT and �MAT , respectively.

Theorem 1 [13] CF MAT CS and MAT MAT REλ⊂ ⊂ ⊆ ⊂
where CF, CS and RE denote the families of context-free, context-sensitive and recursively enumerable languages,
respectively.

Petri Nets

A Petri net (PN) is a construct (, , ,)N P T F φ= where P and T are disjoint finite sets of places and transitions,
respectively, () ()F P T T P⊆ × ∪ × is the set of directed arcs, φ : F� is a weight function.

A Petri net can be represented by a bipartite directed graph with the node set P T∪ where places are drawn as
circles, transitions as boxes and arcs as arrows. The arrow representing an arc (,)x y F∈ is labeled with

(,); if (,) 1,x y x yφ φ = then the label is omitted.
A mapping μ : P� 0 is called a marking. For each place ,p P∈ ()pμ gives the number of tokens in .p

Graphically, tokens are drawn as small solid dots inside circles. The symbols • { (,) }x y y x F= ∈� and
• { (,) }x y x y F= ∈� are called pre- and post-sets of ,x P T∈ ∪ respectively. For ,X P T⊆ ∪ • •

x X

X x
∈

= and

• • .
x X

X x
∈

= For (),t T p P∈ ∈ the elements of • •()t p are called input places (transitions) and the elements of

• •()t p are called output places (transitions) of ().t p

A transition t T∈ is enabled by a marking μ if and only if () (,)p p tμ φ≥ for all • .p t∈ In this case t can occur
(fire). Its occurrence transforms the marking μ into the marking μ′ defined for each place p P∈ by

() () (,) (,)p p p t t pμ μ φ φ′ = − + where (,), (,) .p t t p F∈ We write tμ μ′⎯⎯→ to indicate that the firing of t in μ
leads to .μ′ A marking μ in which no transition is enabled is called terminal.

A finite sequence *
1 2 ,kt t t T∈ is called an occurrence sequence enabled at a marking μ and finished at a

marking μ′ if there are markings 1 2 1, , , kμ μ μ −… such that 11 2
1 1 .k kt tt t

kμ μ μ μ−
− ′⎯⎯→ ⎯⎯→…⎯⎯→ ⎯⎯→ In short this

sequence can be written as 1 2 kt t tμ μ′⎯⎯⎯→ or νμ μ′⎯⎯→ where 1 2 .kt t tν = For each 1 ,i k≤ ≤ marking iμ is
called reachable from marking .μ The symbol (,)N μR denotes the set of all reachable markings from a marking

.μ
A marked Petri net is a system (, , , ,)N P T F φ ι= where (, , ,)P T F φ is a Petri net, ι is the initial marking. A Petri

net with final markings (, , , , ,)N P T F Mφ ι= is a construct where (, , , ,)P T F φ ι is a marked Petri net and
(,)M N ι⊆ R is a set of markings which are called final markings.

An occurrence sequence ν of transitions is called successful for M if it is enabled at the initial marking ι and
finished at a final marking τ of .M If M is understood from the context, we say that ν is a successful occurrence
sequence.

DEFINITIONS

 In this section, we introduce a new variant of Petri net controlled grammar known as place-labeled Petri net
controlled grammar, and present some examples to illustrate their power.

Definition 1 (Place-Labeled Petri Net Controlled Grammar)
A place-labeled Petri net controlled grammar (a pPN controlled grammar for short) is a 7-tuple

(, , , , , ,)G V R S N Mβ= Σ where (, , ,)V R SΣ is a context-free grammar, N is a (marked) Petri net,
: { }P R λβ → ∪ is a place labeling function and M is a set of final markings.

040015-3 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

115.133.23.158 On: Fri, 11 Dec 2015 07:16:11

Let .A P⊆ We use the notations ()Aβ and ()Aλβ− to denote the multisets [()]p p Aβ ∈� and
[() and ()],p p A pβ β λ∈ ≠� respectively.

Further, we define the notions of a direct derivation and a successful derivation.

Definition 2 (Direct Derivation)
The symbol *()x V∈ ∪ Σ directly derives *()y V∈ ∪ Σ with a multiset

1 1 2 2
, , ,

k ki i i i i iA A Aπ α α α= → → … →

R⊕⊆ written as ,x y
π

 if and only if
1 21 2 1ki i k i kx x A x A x A x += and

1 21 2 1ki i k i ky x x x xα α α += where

• *() ,1 1,jx V j k∈ ∪ Σ ≤ ≤ +

• () tλπ β •
−= for some t T∈ enabled at a marking (,).Nμ ι∈ R

Definition 3 (Successful Derivation)
A derivation

31 2
*

1 2 , (1)
n

nS w w w w
π ππ π

= ∈ Σ
where ,1 ,i R i nπ ⊕⊆ ≤ ≤ is called successful if and only if

1) •() for some ,1 ,i i it t T i nλπ β−= ∈ ≤ ≤
2) *

1 2 nt t t T∈ is a successful occurrence sequence in .N

For short, (1) can be written as
1 2

.
n

S w
π π π

Definition 4 (Language Generated by Grammar G)
The language ()L G generated by a grammar G consists of strings *w∈Σ such that there is a successful derivation

1 2

 in .
n

S w G
π π π

With respect to different labeling strategies and the definition of final marking sets, we can define various variants
of place labeled Petri net controlled grammars. In this work, we define the following variants:

Definition 5 (Language Determined by Labeling Function)
A pPN controlled grammar (, , , , , ,)G V R S N Mβ= Σ is called

• free (denoted by f) if a different label is associated to each place, and no place is labeled with the
empty string,

• λ − free (denoted by λ−) if no place is labeled with the empty string,
• arbitrary (denoted by λ) if no restriction is based on the labeling function .β

Definition 6 (Language Determined by a Set of Final Markings)
A pPN controlled grammar (, , , , , ,)G V R S N Mβ= Σ is called

• r-type if M is the set of all reachable markings from the initial marking ,ι i.e. (,),M N ι= R
• t-type if (,)M N ι⊆ R is a finite set.

We use the notation (,)x y − pPN controlled grammar where { , , }x f λ λ∈ − shows the type of a labeling function
and { , }y r t∈ shows the type of a set of final markings.

We denote by PN(,)p x y and PN (,)p x yλ the families of languages generated by (),x y − pPN controlled
grammars without and with erasing rules, respectively, where { , , } and { , }.x f y r tλ λ∈ − ∈

We also use bracket notation []PN (,), { , , }, { , },p x y x f y r tλ λ λ∈ − ∈ in order to say that a statement holds both in
case with erasing rules and in case without erasing rules.

040015-4 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

115.133.23.158 On: Fri, 11 Dec 2015 07:16:11

Further, we give two examples of pPN controlled grammars to demonstrate their generative capacities.
Example 1. Let 1G be a context-free grammar with the rules:

, , , , , , ,S ABC A aA B bB C cC A a B b C c→ → → → → → →
 (the other components of the grammar can be seen from these rules). Figure 1 illustrates a Petri net 1N with respect
to 1.G Obviously, 1() { 1} PN(,).n n nL G a b c n p f t= ≥ ∈�

FIGURE 1. A Petri Net 1.N

Example 2. Let 2G be a context-free grammar with the rules:
, , , , , ,S AB A aA B aB A bA B bB A Bλ λ→ → → → → → →

(the other components of the grammar can be seen from these rules). Figure 2 illustrates a Petri net 2N with respect
to 2.G Obviously, *

2 { { , } } PN(,).L ww w a b p tλ= ∈ ∈�

FIGURE 2. A Petri Net 2.N

040015-5 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

115.133.23.158 On: Fri, 11 Dec 2015 07:16:11

LOWER AND UPPER BOUNDS

In this section, we establish lower and upper bounds for the generative capacity of pPN controlled grammars.
The following inclusions are obvious.

Lemma 1. For { , , }x f λ λ∈ − and { , },y r t∈ PN(,) PN (,).p x y p x yλ⊆

Further, we show that context-free languages can be generated by (),f t − and (),f r − pPN controlled grammars.

Lemma 2. For []{ , }, CF PN (,).y r t p f yλ∈ ⊆

Proof. Let (), , ,G V R S= Σ be a context-free grammar with { : 1 }.i i iR r A i nα= → ≤ ≤� We construct (),f t − place
Petri net controlled grammar 0 0 0({ }, , { }, , , ,)G V S R S S S N Mβ′ = ∪ Σ ∪ → where the Petri net (, , , ,),N P T F φ ι=
the place labeling function 0: { }P R S Sβ → ∪ → and the final marking set M are defined as follows:

• { 0 },iP p i n= ≤ ≤

• { 0 , },ijT t i j n= ≤ ≤

• {(,), (,) 0 , },i ij ij jF p t t p i j n= ≤ ≤
• (,) 1 for all (,) ,x y x y Fφ = ∈
• 0 0() 1 and () 0 for all { },p p p P pι ι= = ∈ −
• 0 0() and () ,1 ,i i ip S S p A i nβ β α= → = → ≤ ≤
• (,).M N ι= R

Remark: By definition of the Petri net ,N it is not difficult to see that (,)N ιR is a finite set. Indeed, in the
occurrence of any transition ,t T∈ only one place p P∈ has a token, and the other places have no tokens. Thus,
| (,) | 1.N nι = +R

Next, we show that () ()' .L G L G= Let
31 2

*
1 2 (2)

i ii i nr rr r

mS w w w w= ∈ Σ
be a derivation in G. We can also construct the derivation

0 31 2 [] [][] [][]

*
0 1 2 , (3)

i ii i nr rr r

m

r

S S w w w w= ∈ Σ
which simulates (2), and it is not difficult to see that the occurrence sequence corresponding to the derivation (3),

1 1 2 2 3 1 10 , (4)
n n n ni i i i i i i i it t t t t

− +

where
1 10 0• { } and • { },1 ,

j j ji i i it r t r j n
+

= ≤ ≤= starts at the initial marking ι and ends at a final marking .Mμ ∈

Thus, () ().L G L G′⊆
The inclusion () ()L G L G′ ⊆ can also be shown by backtracking the arguments above. Hence,

[] []CF PN (,) where { , }.p f y y t rλ λ⊆ ∈

Further, we discuss the upper bound for the families of languages generated by pPN controlled grammars.

Lemma 3. For { , },y r t∈ []PN (,) MAT .p f yλ λ⊆

Proof. Let (, , , , , ,)G V R S N Mβ= Σ be an (),f y − pPN controlled grammar (with or without erasing rules) and
(, , , ,)N P T F φ ι= where { , }.y r t∈

040015-6 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

115.133.23.158 On: Fri, 11 Dec 2015 07:16:11

Let 1 2{ , ,..., }sP p p p= and }.{T t T t•
∅ = ∈ = ∅� Then, let 1 2{ , , , }.nT T t t t∅− = … We define the sets of new

nonterminals as { } and { }.P p p P V A A V= ∈ = ∈� �
We set the homomorphism * *: () ()h V V∪ Σ → ∪ Σ as () for all , and () for all .h a a a h A A A V= ∈ Σ = ∈

Consider ,t T T∅∈ − and let
1 2

• { , , , }.
ki i it p p p= … We assume that () ,1 .

j j ji i ip A R j kβ α= → ∈ ≤ ≤ Let

1 2 1 1 2 2 1()
ki i i l l lh x B x B x B xα α α += where * ,1 1ix i l∈ Σ ≤ ≤ + and ,1 .jB V j l∈ ≤ ≤

We associate the following sequences of rules with each transition :t T T∅∈ −

1 1 2 2

1 2

1 1 2 2

,

(,) (,) (,)

,

, 1 1 2 2

: , , , , , , , , , ,

: (), (), , (),

: , , ,,

i i i

k

k

k

k

kt i i i i i i

p t p t p t

t h i i i i i i

t B l l

p p p p p p

A h A h A h

B B B B B B

φ φ φ

λδ λ λ λ λ λ λ

δ α α α

δ

→ … → → … → … → … →

→ → … →

→ → … →
and define the matrix

, , , ,(, , ,) (5)t t t h t B t Xm λδ δ δ δ=

where 1 2| (,)| | (,)| | (,)|

, 1 2: · · .st p t p t p

t X sX p p p X
φ φ φ

δ →
We also add the starting matrix

| ()|
0 (). (6)p

p P

m S S p Xι

∈

′= → ∏

According to types of the sets of final markings, we consider two cases of erasing rules:

Case .y r= Then

, ,() for each and (). (7)p Xm p p P m Xλ λλ λ= → ∈ = →
Case .y t= For each ,Mμ ∈

1

, 1 1

() ()

(, , , , , , ,). (8)
s

s s

p p

m p p p p Xμ λ

μ μ

λ λ λ λ λ= → … → … → … → →

We consider the matrix grammar (, , ,)G V S M′ ′ ′= Σ where M consists of all matrixes of (5) and (6) and matrix (7)
for case y r= or matrix (8) for case .y t=

Let
1 2

*
1 2 :

d

dD S w w w w
ππ π

= ∈ Σ be a derivation in .G Then, 1 2 dt t t where •() ,1 ,i it i dβ π= ≤ ≤ is a

successful occurrence sequence in .N We construct the derivation D′ in the grammar G′ simulating the derivation
D as follows: we start the derivation D′ by applying the matrix (6) and get

0
| ()| .:

m
p

p P

D S S p Xι

∈

′ ′ ∏
Then, for each transition it in the successful occurrence sequence 1 2 ,dt t t we choose the matrix ,1 ,

it
m i d≤ ≤ in

' :D
0 1 2

| ()|
1 1 2 2:

tt t dmm mm
p

d d d
p P

D S S p X w z X w z X w z X wz Xι

∈

′ ′ =∏
where * ,1 .iz P i d∈ ≤ ≤

The rules ,it hδ and , ,1 ,
it B i dδ ≤ ≤ simulate the rules in the multiset iπ whereas the homomorphism h controls

that all rules in ,it hδ are applied only to 1, 2 .iw i d− ≤ ≤

By construction, the rules ,it λδ and , ,1 ,
it X i dδ ≤ ≤ simulate the number of tokens consumed and produced in the

occurrence of transition .it The number of occurrences of each p P∈ in string iz is the same as the number of
tokens in place p P∈ after the occurrence of .it Moreover, the number of occurrences of p P∈ in string dz and
the number of tokens in place p P∈ in a final marking Mμ ∈ are the same.

Further, to erase dz and ,X we use the matrices (7) or (8) depending on { , }.y r t∈ Thus, () ().L G L G′ ⊆

040015-7 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

115.133.23.158 On: Fri, 11 Dec 2015 07:16:11

Using the similar arguments in backward manner, one can show that the inverse inclusion also holds. Let
0 1 2

| ()|
1 1 2 2:

tt t dmm mm
p

d d d
p P

D S S p X w z X w z X w z X wz Xι

∈

′ ′ =∏ be a derivation in G’. Then we simulate the

derivation of G, 1 2: nD S w w w w= by applying 1 1

tm

i i i iw z X w z X+ + in D’ where the production rules
of G have the same form of tm in (5).

From Example 1, it follows that the inclusion represented in Lemma 2 is strict. On the other hand, from Lemma 3,
pPN controlled grammars can generate at most matrix languages. Thus, we have the lower and upper bounds for
pPN controlled grammars:

Theorem 2. For { , , }x f λ λ∈ − and { , },y r t∈ []CF PN (,) MAT .p x yλ λ⊂ ⊆

THE EFFECT OF LABELING STRATEGIES

 The following lemma follows immediately from the definition of the labeling functions.

Lemma 4. For { , },y r t∈ [] [] []PN (,) PN (,) PN (,).p f y p y p yλ λ λλ λ⊆ − ⊆

We now prove that the reverse inclusions also hold.

Lemma 5. For { , },y r t∈ [] []PN (,) PN (,).p y p f yλ λλ− ⊆

Proof. Let (, , , , , ,)G V R S N Mβ= Σ be a (,)yλ− − pPN controlled grammar (with or without erasing rules) where
(, , , ,).N P T F φ ι= Let { : 1 }.i i iR r A i nα= → ≤ ≤�

 We set the following sets of places, transitions and arcs:
• , ,{ , (,) , , },p t p tP c c p t F p P t T′= ∈ ∈ ∈�

• , ,{ , (,) , , },p t p tT d d p t F p P t T′= ∈ ∈ ∈�

• , , , , , , , ,{(,), (,)(,), (,), (,) (,) , , }.p t p t p t p t p t p t p t p tF p d d c c d d c c t p t F p P t T′ ′ ′ ′= ∈ ∈ ∈�

We also introduce the new nonterminals and productions for each pair (,) , , :p t F p P t T∈ ∈ ∈
• ,{ , (,) , , },p p tV A A p t F p P t T= ∈ ∈ ∈�

• , , ,{ , , (,) , , , () and }.p p p t p t p tR A A A A A p t F p P t T p A R A Vα β α= → → → ∈ ∈ ∈ = → ∈ ∈�

 We define the weight function : Fφ → as follows:

, , , , , , , ,(,) (,) (,) (,) (,) (,)p t p t p t p t p t p t p t p tp d d c c d d c c t p tφ φ φ φ φ φ′ ′ ′ ′= = = = =
where (,) , , .p t F p P t T∈ ∈ ∈

Using the sets and function defined above, we construct an (),f y − pPN controlled grammar
(, , , , , ,)G V R S N Mβ′ ′ ′ ′ ′ ′= Σ with

• ,V V V′ = ∪
• ({ () and (,) }) .R R A R p A p t F Rα β α′ = − → ∈ = → ∈ ∪�

The set components of the Petri net (, , , ,)N P T F φ ι′ ′ ′ ′ ′ ′= are defined as:
, and ({(,)}) .P P P T T T F F p t F F′ ′ ′= ∪ = ∪ = − ∈ ∪

The weight function : Fφ′ ′ → is constructed as:
(,) if (,) {(,) },

(,)
(,) if (,) .
x y x y F p t F

x y
x y x y F

φ
φ

φ
∈ − ∈

′ =
∈

 The initial marking : Pι′ ′ → � is defined as:

040015-8 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

115.133.23.158 On: Fri, 11 Dec 2015 07:16:11

() if ,
()

0 if .
p p P

p
p P

ι
ι

∈
′ =

∈
Next, we set the place labeling function : :P Rβ ′ ′ ′→

() if ,
()

if ,p

p p P
p

A A p P
β

β
−

+

∈
′ =

→ ∈

and, for each ,p tc and ,p tc′ in ,P we set

, , , ,() and ()p t p p t p t p tc A A c Aβ β α′ ′ ′= → = →
where () .p A Rβ α= → ∈

If ,y r= then the final marking set M ′ is defined as (,),M N ι′ ′ ′= R and if ,y t= then for every ,Mμ ∈ we
set Mμν ′∈ where

() if ,
()

0 if .
p p P

p
p Pμ

μ
ν

∈
=

∈
Let us now consider a successful derivation in :G

1 2
*

1 2 (9)
n

nwS w w w
ππ π

= ∈ Σ
where

1 2
, ,..., , :

k j j jii i i i i i ir r r r Aπ α= → and () , , 1 , 1 .
j j ji i i ip r p P i n j kλβ− = ∈ ≤ ≤ ≤ ≤

Let •{ 1 }
ji i i iP p j k t′= ≤ ≤ ⊆� for some ,1it T i n∈ ≤ ≤ (it and ,1jt i j n≤ ≠ ≤ are not necessarily distinct).

Hence, by definition,
1 2 , , (10)nt t t Mι μ μ⎯⎯⎯⎯→ ∈

is the successful occurrence of transitions in .N

Then, by definition of the set R′ of the rules, each derivation step 1 ,1 ,
i

i iw w i n
π

− ≤ ≤ where 0 ,w S= in (9) can
be simulated with the following sequence of the derivation steps in the grammar ' :G

, , , , , ,1 2 1 1 2 2 1 1 2 2()·() () ()·() () ()·() ()

1 11 . (11)
i i i i i t i i t i i t i t i i t i i t ik i i k k i i i k i ki i i i i

A A A A A A A A A A A A A A

i

A

i i iw ww w
α α α→ → → → → →

−−

→ → →

−′′ ′
Correspondingly, by construction of the Petri net ',N each transition ,1 ,it i n≤ ≤ in (10) is extended with the

occurrence sequence

1 2 1 2, , , , , , (12)
i i k i i i k ii ii t i t i t i t i t i t id d d d d d t′ ′ ′

where • • • •
, , , , , ,, { } and { }

j i j j i j i j i j i j ii t i i t i t i t i t i t id p d d c d c t′ ′ ′= = = = ⊆ for all 1 ,1 .ii n j k≤ ≤ ≤ ≤ Thus, () ().L G L G′⊆
Consider some successful derivation

* * (13,)S w w ∈ Σ
in the grammar G′ with

, (14)tι μ′ ⎯⎯⎯→
where , .M t Tμ ′∈ ∈ By construction of ',N in order to enable the transition ,t the transition

• •
, , ,, for each p t p t p td c c t′ ′ ′∈ ∈ and the transition •

, , ,p t p td c∈ for each • •
, ()p tc t∈ must be fired. Thus, if

1 2

•
, , ,{ , , , },

kp t p t p tt c c c′ ′ ′= … then, (14) will contain all the transitions

1 2 1 2, , , , , ,, , , , , , , . (15)
k ktp p t p t p t p t p td d d d d d′ ′ ′… …

Accordingly, (13) contains the rules

, ,, , , (16)
i i i ii p p p t p t iA A A A A α→ → →

where () ,1 .i i ip A i kβ α= → ≤ ≤ Without loss of generality, we can rearrange the order of the occurrence of the
transitions in (15) and correspondingly, the order of the application of the rules in (16), and as a result we construct
the occurrence steps and the derivation steps similar to (12) and (11), respectively.

040015-9 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

115.133.23.158 On: Fri, 11 Dec 2015 07:16:11

Thus, the transitions in (15) can be replaced with t in the grammar G and the rules in (16) can be replaced with
the rules , 1 ,i iA i kα→ ≤ ≤ which results in () ().L G L G′ ⊆

Lemma 6. For { , },y r t∈ []PN (,) PN (,).p y p yλ λλ λ⊆ −

Proof. Let (, , , , , ,)G V R S N Mβ= Σ be a (,)yλ − pPN controlled grammar (with or without erasing rules). Let
{ () } and { () }.SP p P p P p P p S Rλ β λ β α= ∈ = = ∈ = → ∈� �

We define (), yλ− − pPN controlled grammar

0 0 0({ , }, , { , , }, , , ,)G V S X R S SX X X X S N Mλ β′ ′ ′ ′= ∪ Σ ∪ → → →
where 0 0({ , }, { , }, , ,)N P p p T t t Fλ λ φ ι′ ′ ′ ′= ∪ ∪ where 0 ,p pλ are new places and 0 ,t tλ are new transitions. The set
of arcs

0 0 0 0{(,), (,), (,)} {(,) () },F F p t t p p t t p p S Rλ λ λ β α′ = ∪ ∪ = → ∈�

the weight function

0 0 0

0

(,) if (,) ,
(,) 1 if (,) {(,), (,), (,)},

() if (,) (,), ,S

x y x y F
x y x y p t t p p t

p x y t p p P
λ λ λ

φ
φ

ι

∈
′ = ∈

= ∈
and the initial marking

01 if ,
(,) 0 if ,

() if .
S

S

p p
x y p P

p p P P
ι

ι

=
′ = ∈

∈ −
The place labeling function β is modified as

() if ,
() if ,

if .

p p P
p X X p P

X p p

λ

λ

λ

β
λ

β ∉
′ = → ∈

→ =
Lastly, when ,y t= for each final marking ,Mμ ∈ we set Mμν ′∈ as

0

() if ,
()

0 if { , }.
p P

p
p p pμ

λ

μ
ν =

∈

For any derivation *
1 2 nS w w w w= ∈ Σ in G, we construct the derivation

3 11 2
*

2
*

0 1 ni i
n

i i X Xw wSX XS w w + ∈ Σ

in G’ and vice versa. Hence, it is not difficult to see that () ()' .L G L G=

The following theorem summarizes the results obtained in Teorem 2, Lemma 5 and Lemma 6.

Theorem 3. For { , },y r t∈

() () () () () (), , , , , , .CF pPN f y pPN y pPN y pPN f y pPN y p MPN y ATλ λλ λλ λ λ λ⊂ = − ⊆ ⊆ = − = ⊆

CONCLUSION

We introduced a new variant of Petri net controlled grammars, called a place-labeled Petri net controlled
grammar, by considering place labeling strategy instead of transition labeling strategy. We studied the effect of the
labeling strategies to the computational power and established that pPN controlled grammars with erasing rules and
different labeling strategies have the same power. The case without erasing rules has not been solved completely yet.
We also showed that the family of context-free languages are strictly included in the family of languages generated

040015-10 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

115.133.23.158 On: Fri, 11 Dec 2015 07:16:11

by pPN controlled grammars, in its turn, it is included in the family of matrix languages with erasing rules. Further,
we need to establish the tight bounds for the generative capacity of pPN controlled grammars.

ACKNOWLEDGMENTS

The first author would like to thank Universiti Teknologi Malaysia for the UTM Zamalah Scholarship. The second
author is grateful to International Islamic University Malaysia and Ministry of Education for the financial funding
through FRGS13-066-0307 and Endownment B Fund EDW B13-053-0983. The third and fourth authors would
also like to thank the Ministry of Education and Research Management Centre, UTM for the financial funding
through Research University Fund Vote No. 08H45 and Fundamental Research Grant Scheme Vote No. 4F590.
 The authors would like to thank the reviewers for taking the time to read our paper and giving good and
encouraging comments.

REFERENCES

1. A. Petri, “Kommunication mit Automaten”, Ph.D. Thesis, University of Bonn, 1962.
2. M. Hack, “Petri net languages”, Computation Structures Group Memo, Project MAC 124, MIT, Cambridge Mass, 1975.
3. M. Jantzen, Rairo-Inf Theor 13(1), 19–30 (1979).
4. M. H. ter Beek and H. C. M. Kleijn, Formal and Natural Computing, Berlin: Springer-Verlag, 2002, pp. 220-243.
5. M. Jantzen, M. Kudlek and G. Zetzsche, Fundam Inform 85, 1-4, 267–280 (2008).
6. V. Marek and M. ��ska, Proceeding of the 35th Spring Conference: Modelling and Simulation of Systems, 2001, pp. 145–

152.
7. S. Turaev, In Third Doctoral Work-shop on Mathematical and Engineering Methods in Computer Science, MEMICS 2007,

2007, pp. 233–240.
8. J. Dassow, and S. Turaev, Proceedings of the Second International Conference on Language and Automata Theory and

Applications 2008 (LATA2008), 2008, pp. 221-232.
9. J. Dassow and S. Turaev, J Acta Cybernet 19, pp. 609-634 (2010).
10. J. Dassow and S. Turaev, Proceeding of the Second International Workshop on Non-Classical Formal Languages in

Linguistics, pp. 27–39, 2008.
11. J. Dassow and S. Turaev, Rom J Inf Sci Tech 12(2), pp. 91-207 (2009).
12. J. Dassow and S. Turaev, Proceedings of the Third International Conference on Language and Automata Theory and

Applications 2009 (LATA2009), 2009. pp. 326–337.
13. J. Dassow and S. Turaev, J Univers Comput Sci 15(14), pp. 2808–2835 (2009).
14. R. Stiebe and S. Turaev, Electronic Proceedings of Theoretical Computer Science (EPTCS) 3, pp. 193-203 (2009).
15. R. Stiebe and S. Turaev, J. Autom. Lang. Comb.15(1/2), pp. 175-194 (2010).
16. J. Dassow and Gh. Paun, Regulated Rewriting in Formal Language Theory, Berlin: Springer-Verlag, 1989, pp. 25-42.
17. P. Linz, An Introduction to Formal Languages and Automata, 3rd. ed., USA: Jones and Bartlett Publishers, Inc. 2001, pp.

15-24.

040015-11 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

115.133.23.158 On: Fri, 11 Dec 2015 07:16:11

http://dx.doi.org/10.4204/EPTCS.3.18

