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In fuzzy time series forecasting, the weight of fuzzy logical relationships and the mid-
point of interval values are extensively used in the product of defuzzified matrix and
the transpose of the weight matrix into the final forecast model. An improved forecast
can be achieved through this model. Additionally, because of its excellent performance,
successful applications can be widely achieved by exploiting real life data such as enroll-
ment, stock indices and exchange rates for example. However, the improvement of mean
square error is still not significant when the midpoint and the weight values are strictly

increased in both of the matrixes. In order to reduce the mean square error, a reversal
model in which the weight elements are reversed in the transpose matrix is proposed in
this paper. Moreover, a theorem is also proposed to justify this reversal model and the
annual data of electricity load by regions of Taiwan from 1981 to 2000 is examined as
further evidence. The result indicate a consistently significant advantage in the proposed
reversal model, i.e. the mean square error is smaller than the non-reversal model for each
region.

Keywords: Fuzzy time series; weight element; forecasting; reversal model; transpose
matrix; electricity load.
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Nomenclature
ARIMA Autoregressive Integrated Moving Average.
ANN Artificial Neural Network.
PSO Particle Swarm Optimization.
FTS Fuzzy time series.
FLRs Fuzzy logical relationships.
FLG Fuzzy logical group.
TAIEX Taiwan Stock Index.
A A fuzzy subset.
U Universe of discourse.
µA Membership function of A.
µA(uA) The degree of membership of the element ui in A.
F (t) A fuzzy time series.
Σ An operator.
p The interval or subinterval number.
RHS Right-hand side.
LHS Left-hand side.
OWA Ordered weighting averaging.
F (Ai)NR Non-reversal model.
F (Ai)R Reversal model.
× Matrix product operator.
M(Ai) (1 × k) matrix.
W(Ai)

T (k × 1) matrix.
NR Non-reversal model.
R Reversal model.
MSE Mean Squared Error.

1. Introduction

Forecasting is a predictive analytical approach that deals with predicting the future,
generally by using the past data set and corresponding models. It can be applied in
various domains of management such as personnel management, resource manage-
ment, finance management, and organizational management. The study on electric
load forecasting models continues to remain a significant concern worldwide, espe-
cially among electricity companies and the output of these studies is very determina-
tive for energy planning and power management [1]. The methods frequently used
for electricity forecasting are ARIMA, regression time series, time series, genetic
algorithm, artificial intelligence, and PSO. The fuzzy time series approach was first
introduced in [1] and it is another alternative to resolve electricity forecasting prob-
lems. The concept of fuzzy time series is a combination between time series analysis
and the fuzzy set theory [2].

In the applications of real scenarios, numerous models have been proposed by
researchers in FTS forecasting to resolve problems in various areas such as university
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enrolment [2–14], stock prices index [15–18], temperature [19], financial sectors [20,
21], and electricity load consumptions [1, 22–25]. FTS is a novel approach, which
was introduced in [2, 3] for resolving linguistic time series data problems. This
approach is a combination of fuzzy logic and time series analysis. Additionally, the
most critical part in the FTS forecasting is the assumption regarding the unneeded
data, which is the main difference from the statistical approaches. In FTS approach,
the final forecasted value has been modeled by using fuzzification, FLRs, FLG, and
defuzzification.

Many different models have been proposed for fuzzy time series forecasting by
researchers. For example, in [13], a study on heuristic models of the fuzzy time
series for forecasting by using stock index data was initiated. A fuzzy time series
model for stock index was then analyzed in [14]. The weighted fuzzy time series
model has been suggested in [15] for forecasting of the TAIEX. This weight was
assigned using the recurrent FLRs in the FLG. In addition, a trend-weighted fuzzy
time series model is also discussed in [16] for TAIEX forecasting. A generalized
approach for forecasting by using the fuzzy weights is presented in [17]. In [15], the
final forecasted value was equal to the product of the defuzzified matrix and the
transpose of the weight matrix. However, the model proposed by Yu [15] is yet to be
improved to resolve the monotonic increasing of weight values if the chronological
order occurred in the FLG.

This study introduces a new reversal model in fuzzy time series forecasting.
Through this model, the monotonic (strictly) increase of the intervals midpoints
and the weight values can be resolved if the chronological order of FLRs occurs in
the FLG. Moreover, the position elements of weight will be reversed from maximum
to minimum values respectively in the transpose matrix. Furthermore, by using the
product rule, this transpose matrix and the defuzzified matrix can be implemented
to determine the final forecasted value. To justify this proposed model, a theorem
is also presented, supported with the proof.

The remainder of this paper is organized as follows: Section 2 presents the basic
theory of fuzzy set and fuzzy time series; Section 3 describes the types of FLRS
in the FLG and the importance of weighted fuzzy time series with some examples;
The importance of weight fuzzy time series in forecasting is explained in Section 4;
Section 5 explores the reversal model as a proposed model and an empirical study
of electricity load forecasting by regions of Taiwan; some conclusions of this study
are presented in the final section.

2. The Fundamental Theories in Fuzzy Time Series

2.1. Fuzzy time series concept

FTS is a new approach which was developed for resolving linguistic time series data
problems in [2, 3]. This approach combines linguistic variables with the analysis
process of applying fuzzy logic into time series to solve the fuzziness of the data.
The most important part in fuzzy time series forecasting is the assumption regarding
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data that are not needed, which is what mainly differentiates it from the statistical
approaches. For example, the number of observations does not need to be limited
and the linearity assumption does not have to be considered. Overall, the model
has been established by using fuzzification, FLRs, FLG, and defuzzification. The
applications of this proposed model can be found in some domain problems as
mentioned before in Section 1. Hence, this section describes the fuzzy set, fuzzy
time series, other related terms, and the forecasting algorithm that is used in this
paper.

2.2. Fuzzy set definition

We begin by defining A on U and in doing so we mainly follow [2]:

A = {(ui, µi(ui)) |ui ∈ U}, (1)

where µA : U → [0, 1]. If U is defined as finite and infinite sets, then A can be
expressed as follows [2]:

A =
∑ µA(ui)

ui
=

µA(u1)
u1

+
µA(u2)

u2
+ · · · + µA(un)

un
, (2)

and

A =
∫

µA(ui)
ui

du, ∀ui ∈ U. (3)

2.3. FTS definitions and the forecasting algorithm

Definition 1. Fuzzy time series [2]
Let Y (t) (t = 0, 1, 2, . . .), a subset of real numbers, be the universe of discourse on
which fuzzy sets fi(t) (i = 1, 2, . . .) are defined in the universe of discourse. Y (t)
and F (t) is a collection of fi(t) (i = 1, 2, . . .). Then F (t) is called a fuzzy time series
defined on Y (t) (t = 0, 1, 2, . . .). Therefore, F (t) can be understood as a linguistics
time series variable, where fi(t) (i = 1, 2, . . .), are possible linguistics values of F (t).

Definition 2. Fuzzy relation [2]
If there exists a fuzzy relationship R(t−1, t), such that F (t) = F (t−1)◦R(t−1, t),
then F (t) is said to be caused by F (t − 1) as denoted as

F (t − 1) → F (t). (4)

Definition 3. First-order model in Fuzzy time series [2]
Suppose F (t) is caused by F (t−1) denoted by F (t−1) → F (t), then this relationship
can be represented as:

F (t) = F (t − 1) ◦ R(t, t − 1), (5)

where R(t, t−1) is a fuzzy relationship between F (t) and F (t−1) and is called the
first-order model of F (t).
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Definition 4. FLRs [15]
Let F (t − 1) = Ai and F (t) = Aj . The relationship between two consecutive data
(called a FLR), i.e., F (t) and F (t−1), can be denoted as Ai → Aj , i, j = 1, 2, . . . , p

is called the LHS, and Aj is the RHS of the FLR.

Definition 5. FLG [15]
Let Ai → Aj , Ai → Ak, . . . , Ai → Ap are FLRs with the same LHS which can be
grouped into an ordered FLG by putting all their RHS together as on the RHS of
the FLG. It can be written as:

Ai → Aj , Ai → Ak, . . . , Ai → Ap; i, j , k , . . . , p = 1, 2, . . . , n (n ∈ N). (6)

Meanwhile, the forecasting algorithm can be delineated into several steps as sug-
gested in [2]:

• U is defined and divided into several equal length of intervals.
• Each interval is fuzzified into linguistics time series values (Ai, i = 1, 2, . . . , p, p

is partition number).
• The fuzzy logical relationships are established among linguistics time series val-

ues, Ai → Aj , i, j = 1, 2, . . . , p.
• The forecasting rule is established.
• The forecast value is determined.

3. The Fuzzy Logical Relationship Types

In order to know the types of FLRs in the FLG, we should define some related
terms in fuzzy relation such as recurrence, non-recurrence, chronological order and
non-chronological order of FLRs as bellow:

Definition 6. Recurrence and Non-recurrence of FLR
Let Ai → Aj , Aj , Ak, Al, Aj , Aj , Am (i, j, k, l, m ≤ p ∈ N) be an FLG. The occur-
rence of a particular FLR Aj represents the number of its appearances in the past.
Thus, this condition is called as recurrence. While, the other condition is called as
non-recurrence.

Definition 7. Chronological Order and Non-chronological Order of FLR
Let Ai → Aj , Ak, Al, Am (j < k < l < m and i, j, k, l, m ≤ p ∈ N) be an FLG. The
occurrence of each particular of Aj , Ak, Al, Am represents the strictly increasing of
index number and follows the generated time series. Thus, this condition is called as
chronological order. While, other conditions are called as non-chronological order.

In consideration of the previous studies and both Definitions 5 and 6, the types of
FLRs can be classified as listed below:

a. Recurrence with chronological order

For this type, each FLR can occur more than one time and also be in chronological
order in the FLG. For example, let A3 → A1, A1, A2, A3, A3, A4, A5 be an FLG.
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Through this example, the linguistics time series data of A1 and A3 can occur more
than one time and the index numbers of these linguistics can increase monotonously.

b. Recurrence with chronological order

This type does not have too much differences compared with type (a) except that
no chronological order can be found in the FLG among FLRs. For example, let
A3 → A3, A2, A2, A5, A3, A4, A5 be an FLG. This example shows that the linguistics
time series data of A2 and A3 can occur more than one time, but the time events
are not in chronological order respectively.

c. Non-recurrence with chronological order

For this type, no recurrence can be found among FLRs in the FLG, but the time
events are in chronological order. For example, let A3 → A3, A4, A5, A6, A7 be an
FLG. Through this example, each FLR occurs only one time in FLG. Additionally,
the time events of FLRs are in chronological order in FLG.

d. Non-recurrence without chronological order

For this type, the recurrence of FLRs cannot be found in the FLG. Moreover,
the time event of each FLR occurs randomly in the FLG. For example, let A3 →
A4, A6, A5, A2, A3 be an FLG. This sample shows that no recurrence can be found
among FLR. Furthermore, the time event of FLR does not occur in chronologically
order in the FLG.

4. The Importance of Weight in Fuzzy Time Series Forecasting

In fuzzy time series, the forecasting model uses the fuzzy relationships among the
linguistic time of series values. Two fuzzy types of relationships are (i) the same-
fuzzy logical relationship and (ii) the different-fuzzy logical relationship. Both types
of relationships may occur either recurrently or frequently. The occurrence of a
particular fuzzy relationship explains the number of its appearances in the past.
Some of the reasons for establishing the weight factor are:

(1) To compensate for the presence of bias especially when the events are frequently
occurred [26].

(2) To raise the influence of the more accurate input data, and to reduce the influ-
ence of the less accurate ones [27].

Fundamentally, these are the reasons for finding the weights in the fuzzy relation-
ships. Similar to the research findings in [15] and [16], the weight factors were
denoted within the weight matrix given in the following definition.

Definition 8. Ordered weighting averaging [28].
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Yager’s OWA operator of dimension n is a mapping

∅ : R
n → R,

which has an associated weights W = (w1 w2 w3 · · · wn)T or can be written as:

W =




w1

w2

...

wn



, (7)

such that

(i) wi ∈ [0, 1]
(ii)

∑n
i=1 wi = 1

∅(a) = ∅(a1, . . . , an) =
n∑

i=1

wiaσ(i), (8)

where σ : {1, . . . , n} → {1, . . . , n} is a permutation function, such that aσ(i) is
the highest value in the set {a1, . . . , an: aσ(i) ≥ aσ(i−1)}.
The recurrence of FLRs in the FLG has been solved using weighted fuzzy time

series in [15, 16], both weights rules are detailed as follows:

(a) Yu’s weight rule
There were two reasons why the weight of FTS was suggested. The first reason
was to resolve the recurrence of FLRs, which were not properly handled in
previous related studies. The other one was to improve the forecast accuracy.
The issues were elaborated by the following examples:

Let A1, A2, A1, A1, A1, A1 be linguistics time series values. Based on the
Definitions 3, 4, and Yu’s rule, then the FLRs, FLG and weights were described
as follows:

• Establishing the FLRs: A1 → A2, A2 → A1, A1 → A1, A1 → A1, A1 → A1.
Thus, there were five relationships among the linguistic time series values.

• Establishing the FLG: A1 → A2, A1, A1, A1 was called as the first group and
A2 → A1 was called as the second group. A1 had one relationship with A2,
but A1 had 3 recurrent fuzzy relations with itself. On the other hand, there
was no recurrence of A2.

• Determining the weight values: A1 → A2, w1 = 1/10, A1 → A1, w2 =
2/10, A1 → A1, w3 = 3/10, A1 → A1, w4 = 4/10. The total value of w2, w3,
and w4 was more than w1, because there were three recurrences of A1, while
there was no recurrence of A2 in this group. Moreover, no weight was found
for the second group. Yu proposed that the nominators of weights should
be determined by using the natural number (i = 1, 2, . . . , n). However, Yu’s
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rule indicates that weights increased following the number of relationships.
In addition, these weights were applied to the forecasting approach.

(b) Cheng’s et al. weight rule
Cheng et al. [16] also considered the trend-weighted recurrence of FLRs in the
FLG. Moreover, by using the same example with part (a), the assigning of
trend-weighted components for fuzzy relations were explained as follows:

• Establishing the FLRs: A1 → A2, A2 → A1, A1 → A1, A1 → A1, A1 → A1.
Thus, there were five relationships among the linguistics time series values.

• Establishing the FLG: A1 → A2, A1, A1, A1 was called as the first group and
A2 → A1 was called as the second group. A1 had one relationship with A2,
but A1 had 3 fuzzy relations with itself. On the other hand, there was no
recurrence of A2.

• Determining the weight values: A1 → A2, w1 = 1/7, A1 → A1, w2 =
1/7, A1 → A1, w3 = 2/7, A1 → A1, w4 = 3/7. The sum value of w2, w3,
and w4 was more than w1, because that there were three recurrences of A1,
while there was no recurrence of A2 in this group. According to this rule,
the numerators of weights increased following the recurrence and the same
left-hand sides of FLRs in FLG. Thus, these weights were called as a trend.
The same as the findings in [15], which these numerators were also assigned
with the natural numbers.

Definition 9. Monotonic sequences
The sequence (xn) is said to be:

• monotonically increasing, or simply increasing, if xn+1 ≥ xn for all n ∈ N;
• strictly increasing if xn+1 > xn for all n ∈ N;
• monotonically decreasing, or decreasing, if xn+1 ≤ xn for all n ∈ N;
• strictly decreasing if xn+1 < xn for all n ∈ N.

5. The Reversal Model

The assigning weight fuzzy time series was introduced for handling the recurrence of
relationships in the FLG [15]. In this paper, we consider the reversal method based
on the recurrence and non-recurrence with chronological order of FLRs in the FLG.
On the other hand, if Yu’s rule is applied to these types of FLRs, then weight values
would be increased monotonically in the weight transpose matrix. Moreover, the
midpoint interval values would also be strictly increased in the defuzzified matrix.
Therefore, the product of both matrixes would be increased sharply. In order to
tackle this problem, we propose a new model named reversal model. Through this
model, the weight elements are reversed respectively in the transpose matrix.

Suppose Ai → A1, A2, A3, . . . , Ap be an FLG (i = 1, 2, 3, . . . , p). The cor-
responding weights for A1, A2, A3, . . . , Ap, say, c1, c2, . . . , cp were specified. By
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applying Yu’s model, the weights values were derived as follows:
Given c1 = 1, c2 = 2, . . . , cp = p and w1 = c1Pp

i=1 ci
, . . . , wp = cpPp

i=1 ci
, p ∈ N.

Thus

W(Ai) =
[

c1

c1 + · · · cp

c2

c1 + · · · cp
· · · cp

c1 + · · · cp

]

=
[

c1∑p
i=1 ci

· · · cp∑p
i=1 ci

]

=
[

1∑p
i=1 i

2∑p
i=1 i

· · · p∑p
i=1 i

]
, (9)

where
∑p

i=1 wi =
Pp

i=1 ciPp
i=1 ci

= 1 had satisfied both the condition and Definition 5.
Furthermore, weight elements could also be presented in the weight matrix W as
shown below:

W(Ai) = [w1 w2 · · · wp]. (10)

By using Eq. (9) and applying Definition 9, the weight elements are strictly increas-
ing in this matrix, hence, it also satisfied the following condition:

w1 < w2 < · · · < wn. (11)

Suppose the forecast of F (Ai) is A1, A2, A3, . . . , Ap. The defuzzified matrix was
equal to the matrix of the midpoints of A1, A2, A3, . . . , Ap:

M(Ai) = [m1 m2 · · · mp]. (12)

In this matrix, the midpoint values were also strictly increasing, written as:

m1 < m2 < · · · < mp. (13)

The final forecast of F (Ai) was equal to the product of defuzzified matrix and the
transpose of the weight matrix [15].

F (Ai) = M(Ai) × W(Ai)
T
. (14)

Furthermore, Eq. (14) is called as a NR. In this model, the forecasting values of
Ai are always higher than the actual values of Ai because the interval midpoints
(Eq. (13)) and the weights values (Eq. (11)) are strictly increasing. Additionally,
these values would influence the level of forecasting accuracy significantly. To resolve
these increasing values, a new model is proposed as follows:

Given

W (Ai)
T =




w1

w2

...

wp



. (15)
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The element weights were reversed in the transpose matrix as written below:

W (Ai)
T =




wp

wp−1

...

w1



. (16)

Substituting Eq. (16) in Eq. (14) provides:

F (Ai) = M(Ai) × W(Ai)
T ,

F (Ai) = [m1 m2 · · · mp] ×




wp

wp−1

...

w1



. (17)

Equation (17) is as R. Even though this equation looks similar with Eq. (14), both
models are different in the weight transpose matrix. This model is proposed to be
suitable for the scenario of strictly increasing weight values. Furthermore, in order
to justify the capability of this model, a theorem is proposed as follows:

Theorem. Non Reversal and Reversal Models

Suppose Ai → A1, A2, A3, . . . , Ap be a non-recurrence in the FLG (i = 1, 2, 3, . . . , p)
and corresponding weights for A1, A2, A3, . . . , Ap are w1, w2, . . . , wp respectively.
The defuzzified value of the midpoint of A1, A2, A3, . . . , Ap are m1, m2, . . . , mp

respectively. Let {m1, m2, . . . , mp} ∈ R
+ and {w1, w2, . . . , wp} ∈ R

+ which the
values of the midpoint and the weight were strictly increasing. If the final forecast
of F (Ai) was equal to the product of defuzzified matrix and the transpose of the
weight matrix, then the forecasted values from non-reversal model F̂ (Ai)NR would
be greater than the reversal model F̂ (Ai)R.

Proof. Let

non-reversal model F̂ (Ai) = [m1 m2 · · · mp] × [w1 w2 · · · wp]T

and

reversal model F̂ (Ai) = [m1 m2 · · · mp] × [wp wp−1 · · · w1]T ,

we would like to prove that F̂ (Ai)NR > F̂ (Ai)R. Since the values of the midpoint
and the weight were strictly increasing, which indicate that mp+1 > mp and wp+1 >

wp for all p ∈ N, thus

m1 · w1 < m2 · w1
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since w1 < w2,

m1 · w1 < m2 · w1 < m2 · w2,

and since w2 < w3,

m2 · w2 < m3 · w2 < m3 · w3. (18)

If we added more of midpoint interval values until the numbers in Eq. (18) reaches
p, so

wp−1 < wp,

thus

mp−2 · wp−1 < mp−1 · wp−1 < mp · wp,

then

m1 · w1 < m2 · w2 < m3 · w3 < · · · < mp−1 · wp−1 < mp · wp.

According to Eq. (18), it is clear that m1 ·w1 < m3 ·w3, by adding m2 ·w2 to both
sides of the equation we obtain,

(m1 · w1) + (m2 · w2) < (m2 · w2) + (m3 · w3).

Since w1 < m1, w2 < m2, and w3 < m3, thus

(m1 · w1) + (m2 · w2) > (m1 · w2) + (m2 · w1), (19)

(m2 · w2) + (m3 · w3) > (m2 · w3) + (m3 · w2). (20)

This gives

(mp−1 · wp−1) + (mp · wp) > (mp−1 · wp) + (mp · wp−1). (21)

According to (19)∼(21), then

(m1 · w1) + (m2 · w2) + (m3 · w3) + · · · + (mp−1 · wp−1) + (mp · wp) > (m1 · wp)

+ (m2 · wp−1) + · · · + (mp−1 · w2) + (mp · w1),

so

[m1 m2 m3 . . . mp−1 mp] × [w1 w2 w3 . . . wp−1 wp]T

> [m1 m2 m3 . . . mp−1 mp] × [wp wp−1 . . . w2 w1]T ,

which implies

F̂ (Ai)NR > F̂ (Ai)R. (22)

Furthermore, we illustrate the implementation of this theorem via the following
examples.

Example 1. Recurrence with chronological order (type a)
Let A3 → A1, A1, A2, A4, A3, A3, A5 be an FLG. Suppose the midpoint

values m1, m1, m2, m4, m3, m3, m5 are 89, 89, 91, 95, 93, 93, 97 respectively.
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Both non-reversal and reversal models are applied to get the final forecast of A3 as
comparison below.

Given an FLG with 7 FLRs from A3, in which c1 = 1, c2 = 2, . . . , c7 = 7,

w1 =
1∑7

i=1 ci

, . . . , w7 =
7∑7

i=1 ci

w1 =
1
28

, . . . , w7 =
7
28

.

Thus

W(A3)= [w1 w2 · · · w7] =
[

1
28

2
28

· · · 7
28

]
= [0.04 0.07 0.11 0.14 0.18 0.21 0.25]

• Non-Reversal Model
M(A3) = [89 89 91 95 93 93 97] and W(A3) = [0.04 0.07 0.11 0.14 0.18 0.21
0.25].
Thus

F̂ (A3) = M(A3) × W(A3)T

= [89 89 91 95 93 93 97]× [0.04 0.07 0.11 0.14 0.18 0.21 0.25]T

= 93.64.

• Reversal Model

F̂ (A3) = M(A3) × W(A3)T

= [89 89 91 95 93 93 97]× [0.25 0.21 0.18 0.14 0.11 0.07 0.04]T

= 91.12.
According to the non-reversal and reversal models, the final forecasted values of A3

are 93.64 and 91.12 respectively. As the actual value of A3 was 92.10, the difference
between the actual value and the forecasted value by the non-reversal model is
larger than the difference between actual value and forecasted value by the reversal
method. Therefore, the forecasting error based on non-reversal model is also larger
in comparison to the error from reversal model we propose in this paper.

Example 2. Non-Recurrence with chronological order (type c)
Let A3 → A1, A2, A3, A4, A5 be an FLG. Suppose the midpoint of A1, A2, A3,

A4, A5 are 89, 91, 93, 95, 97 respectively. Then, the weights values and the final
forecast of A3 can be calculated by using both non-reversal and reversal models,
the final forecast of A3 are:

Given an FLG with 5 FLRs from A3 which c1 = 1, c2 = 2, . . . , c5 = 5 and the
weight values for A3 as follow:

w1 =
1∑5

i=1 ci

, . . . , w5 =
5∑5

i=1 ci

w1 =
1
15

, . . . , w5 =
5
15
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Thus,

W(A3) = [w1 w2 · · · w5] =
[

1
15

2
15

· · · 5
15

]
= [0.07 0.13 0.20 0.27 0.33]

Furthermore, the final forecast of A3 is derived by using both non-reversal and
reversal models as follows:

• Non-Reversal Model
M(A3) = [89 91 93 95 97] and W(A3) = [0.07 0.13 0.20 0.27 0.33].
Thus

F̂ (A3) = M(A3) × W(A3)T

= [89 91 93 95 97] × [0.07 0.13 0.20 0.27 0.33]T

= 94.32

• Reversal Model

F̂ (A3) = M(A3) × W(A3)T

= [89 91 93 95 97]× [0.33 0.27 0.20 0.13 0.07]T

= 91.68

The final forecasted values of A3 by using non reversal and reversal models are 94.32
and 91.68 respectively. Compared to the actual value of A3, which was 92.10, the

Table 1. Annual electric load data from 1981 to
2000 in Taiwan by regions (Mega-Watts).

Year North Central Southern Eastern

1981 3388 1663 2272 122
1982 3523 1829 2346 127
1983 3752 2157 2494 148
1984 4296 2219 2686 142
1985 4250 2190 2829 143
1986 5013 2638 3172 176
1987 5745 2812 3351 206
1988 6320 3265 3655 227
1989 6844 3376 3823 236

1990 7613 3655 4256 243
1991 7551 4043 4548 264
1992 8352 4425 4803 292
1993 8781 4594 5192 307
1994 9400 4771 5352 325
1995 10254 4483 5797 343
1996 11222 5061 6336 358
1997 10719 4935 6369 363
1998 11642 5061 6318 397
1999 11981 5233 6259 401
2000 12924 5633 6804 420
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difference between actual value and the forecasted value by non-reversal method
is larger. In other words, the reversal model again provides a better forecast as it
shows smaller differences between the original value and the forecast. In general,
the forecasting error by the reversal model is smaller than the non-reversal model.

Example 3. Comparison of mean square error (MSE) based on real data.
Both non-reversal and reversal models are applied in forecasting the yearly

electric load of Taiwan by regions in [29], in which the data covers the period from
1981 to 2000 as presented in Table 1.

By using Yu’s algorithm, the performance of forecasting measured by MSE for
both models is illustrated in Table 2.

In order to evaluate the performances of both models more clearly, the time
series plot between actual data (Eastern region) and the forecasted values by both
models is also illustrated in Fig. 1.

By comparing the actual load of the Eastern region with forecasted values from
the non-reversal model and reversal model, Fig. 1 indicates that reversal model

Table 2. Comparative MSE between non-reversal and
reversal models.

MSE Non-reversal Reversal

North 36843.3217 24997.7174
Central 3195.0985 3066.1605
Southern 7751.0529 5819.9045
Eastern 30.8836 22.0894
Rank 2 1

Year (Time)

E
le

ct
ri

ci
ty

 lo
ad

2010 12 14 16 1882 4 6

450

400

350

300

250

200

150

100

Variable

Reversal Model

Eastern
Non-Reversal Model

Time Series Plot of Actual data (Eastern Region) and Forecasted Values 

Fig. 1. Actual value and forecasted values by non-reversal and reversal models for the Eastern
region in Taiwan.
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Table 3. Comparative aspects between non-reversal and reversal models.

Non-reversal Model Reversal Model

• Easier to be applied in determining the final
forecasted values of Ai.

• Ineffective to handle the strictly increas-
ing values of the midpoint intervals and the
weight FLRs.

• Effective to handle the strictly decreasing
values of the midpoint intervals and the
weight FLRs.

• Unpromising to reduce the forecasting error
or mean square error especially for type (a,
c) of FLRs occurred.

• Easier to be applied in determining the final
forecasted values of Ai.

• Effective to handle the strictly increasing
values of the midpoint intervals and the
weight FLRs especially for type (a, c).

• Ineffective to handle the strictly decreas-
ing values of the midpoint intervals and the
weight FLRs.

• Promising to reduce the forecasting error
or mean square error especially for type (a,
c) of FLRs occurred.

provides better performance than the non-reversal model in term of forecasting
accuracy. According to the three examples listed so far, the comparisons of non-
reversal and reversal models are summarized in detail in Table 3.

6. Conclusion

The primary concern of this study was proposing a new model in FTS forecasting
named the reversal model. This model was applied and shown to be suitable for
resolving the type (a) and (c) of FLRs, which were left unsolved in [15]. The most
important outcome of this proposed model is that the error of the final forecasted
values of Ai can be reduced significantly. Additionally, a theorem was also presented
and proved to justify the capability of this reversal model. This paper lists the facts
and proofs, also provides several examples to illustrate the implementation of this
theorem. In summary, the final forecasts of Ai from the reversal model provide
a lower error than the final forecasts from the non-reversal model. Therefore, the
proposed reversal model outperforms the non-reversal model in term of forecasting
accuracy.
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