
Fuzzy Splicing Systems

Fariba Karimi1, Sherzod Turaev2, Nor Haniza Sarmin3, and Wan Heng Fong4

1 Royal Society Wolfson Biocomputation Research Lab,
Biocomputation School of Computer Science,

University of Hertfordshire,
Hatfield, Hertfordshire AL10 9AB, UK

fk.karimi@gmail.com
2 Department of Computer Science,

Kulliyyah of Information and Communication Technology,
International Islamic University Malaysia,

53100 Kuala Lumpur, Malaysia
sherzod@iium.edu.my

3 Department of Mathematical Sciences, Faculty of Science,
Universiti Teknologi Malaysia,

81310 UTM Johor Bahru, Johor, Malaysia
nhs@utm.my

4 Ibnu Sina Institute for Fundamental Science Studies,
Universiti Teknologi Malaysia,

81310 UTM Johor Bahru, Johor, Malaysia
fwh@ibnusina.utm.my

Abstract. In this paper we introduce a new variant of splicing systems,
called fuzzy splicing systems, and establish some basic properties of lan-
guage families generated by this type of splicing systems. We study the
“fuzzy effect” on splicing operations, and show that the “fuzzification”
of splicing systems can increase and decrease the computational power of
splicing systems with finite components with respect to fuzzy operations
and cut-points chosen for threshold languages.

1 Introduction

Though computers have gained such a dominant position in our life, they have
many drawbacks: there are numerous intractable problems, which cannot be
solved with their help. DNA computing appears as a challenge to develop new
types of algorithms and to design new types of computers which differ from clas-
sical notions of algorithms and computers in fundamental way. DNA computing
models use Watson-Crick complementary of DNA molecules that are double
stranded structures composed of four nucleotides A (adenine), C (cytosine), G
(guanine) and T (thymine) always presenting in pairs A–T and C–G. Another
feature of DNA molecules is the massive parallelism of DNA strands, which al-
lows constructing many copies of DNA strands and carrying out operations on
the encoded information simultaneously. The use of these two fundamental fea-
tures of DNA molecules has already illustrated that DNA based computers can

D. Hwang et al. (Eds.): ICCCI 2014, LNAI 8733, pp. 20–29, 2014.
c© Springer International Publishing Switzerland 2014

Fuzzy Splicing Systems 21

solve many computationally intractable problems: Hamiltonian Path Problem
[1], the Satisfiability Problems [2,3], etc.

A concept of splicing system, one of the early theoretical proposals for DNA
based computation, was introduced by Head [4] using a splicing operation –
a formal model for DNA recombination under the influence of restriction en-
zymes. This process works as follows: two DNA molecules are cut at specific
subsequences and the first part of one molecule is connected to the second part
of the other molecule, and vice versa. This process can be formalized as an op-
eration on strings, described by a so-called splicing rule, which are the basis of
a computational model called a splicing system. A system starts from a given
set of strings (axioms) and produces a language by iterated splicing according
to a given set of splicing rules. Because of practical reasons, the case when the
components of splicing systems are finite is of special interest. But splicing sys-
tems with finite sets of axioms and rules generate only regular languages (see
[5]). Consequently, several restrictions in the use of rules have been considered
(for instance, see [6]), which increase the computational power up to the Turing
equivalent languages.

The treatment of splicing systems as language-generating devices allows using
concepts, methods and techniques of formal language theory to study the prop-
erties of splicing systems. One can easily adapt many extension and restriction
mechanisms associated with grammars and automata for splicing systems. In
this paper we focus on the study of “fuzzified” splicing systems, whose grammar
and automata counterparts have widely been investigated recent years (for de-
tails, see the monograph [7]). The concept of fuzzy splicing systems is introduced
as follows: we associate the truth values from the closed interval [0, 1] with each
axiom, and calculate the truth value of a string w resulted from strings u and
v applying a fuzzy operation over their truth values. We select a subset of the
language generated by a fuzzy splicing system according to some cut-points in
[0, 1], which is called a threshold language. We show that some threshold lan-
guages with the selection of appropriate cut-points can generate non-regular
languages.

This paper is organized as follows. Section 2 contains some necessary defini-
tions and notations from the theories of formal languages and splicing systems.
In Section 3, the concepts of fuzzy splicing systems and threshold languages
generated by fuzzy splicing systems are introduced. Section 4 shows the power
of fuzzy splicing systems: some fuzzy splicing systems of finite components can
generate context-free and context-sensitive languages. Section 5 discusses some
open problems and possible topics for future research in this direction.

2 Preliminaries

In this section we recall some prerequisites, by giving basic notions and notations
of the theories of formal languages and splicing systems which are used in sequel.
The reader is referred to [8,6,9] for further information.

Throughout the paper we use the following general notations. The symbol
∈ denotes the membership of an element to a set while the negation of set

22 F. Karimi et al.

membership is denoted by �∈. The inclusion is denoted by ⊆ and the strict
(proper) inclusion is denoted by ⊂. The empty set is denoted by ∅. The car-
dinality of a set X is denoted by |X |. The families of recursively enumerable,
context-sensitive, context-free, linear, regular and finite languages are denoted
byRE, CS, CF, LIN, REG and FIN, respectively. For these language families,
the next strict inclusions, named Chomsky hierarchy (see [9]), hold:

Theorem 1. FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.

Further, we briefly cite some basic definitions and results of iterative splicing
systems which are needed in the next section.

Let V be an alphabet, and #, $ �∈ V be two special symbols. A splicing rule
over V is a string of the form

r = u1#u2$u3#u4, where u1, u2, u3, u4 ∈ V ∗.

For such a rule r ∈ R and strings x, y, z ∈ V ∗, we write

(x, y) �r z if and only if x = x1u1u2x2, y = y1u3u4y2, and z = x1u1u4y2,

for some x1, x2, y1, y2 ∈ V ∗.
The string z is said to be obtained by splicing x, y, as indicated by the rule r;

the strings u1u2 and u3u4 are called the sites of the splicing. We call x the first
term and y the second term of the splicing operation.

An H scheme (a splicing scheme) is a pair σ = (V,R), where V is an alphabet
and R ⊆ V ∗#V ∗$V ∗#V ∗ is a set of splicing rules. For a given H scheme σ =
(V,R) and a language L ⊆ V ∗, we write

σ(L) = {z ∈ V ∗ | (x, y) �r z, for some x, y ∈ L, r ∈ R},
and we define

σ∗(L) =
⋃

i≥0

σi(L)

by

σ0(L) =L,

σi+1(L) =σi(L) ∪ σ(σi(L)), i ≥ 0.

An extended H system is a construct γ = (V, T,A,R), where V is an al-
phabet, T ⊆ V is the terminal alphabet, A ⊆ V ∗ is the set of axioms, and
R ⊆ V ∗#V ∗$V ∗#V ∗ is the set of splicing rules. The system is said to be non-
extended when T = V . The language generated by γ is defined by

L(γ) = σ∗(A) ∩ T ∗.

EH(F1, F2) denotes the family of languages generated by extended H systems
γ = (V, T,A,R) with A ∈ F1 and R ∈ F2 where

F1, F2 ∈ {FIN,REG,CF,LIN,CS,RE}.

Fuzzy Splicing Systems 23

Theorem 2 ([6]). The relations in the following table hold, where at the in-
tersection of the row marked with F1 with the column marked with F2 there
appear either the family EH(F1, F2) or two families F3, F4 such that F3 ⊂
EH(F1, F2) ⊆ F4.

FIN REG LIN CF CS RE

FIN REG RE RE RE RE RE

REG REG RE RE RE RE RE

LIN LIN, CF RE RE RE RE RE

CF CF RE RE RE RE RE

CS RE RE RE RE RE RE

RE RE RE RE RE RE RE

3 Main Results

In this section, we introduce the concept of fuzzy splicing system, initially assign-
ing the truth values (i.e., the fuzzy membership values) from the closed interval
[0, 1] to the axioms of splicing systems. Then, we calculate the truth value of
every generated string z from strings x and y using a fuzzy operation over their
truth values.

Definition 1. A fuzzy extended splicing system (a fuzzy H system) is a 6-tuple
γ = (V, T,A,R, μ,�) where V, T,R are defined as for a usual extended H system,
μ : V ∗ → [0, 1] is a (fuzzy) membership function, A is a subset of V ∗× [0, 1] and
� is a fuzzy operation over [0, 1].

A fuzzy splicing operation is defined as follows.

Definition 2. For (x, μ(x)), (y, μ(y)), (z, μ(z)) ∈ V ∗ × [0, 1] and r ∈ R,

[(x, μ(x)), (y, μ(y))] �r (z, μ(z))

if and only if (x, y) �r z and μ(z) = μ(x)� μ(y).

Then, for a fuzzy splicing system γ = (V, T,A,R, μ,�), we define the fuzzy
set of strings obtained by splicing strings in A according to splicing rules in R
and the fuzzy operation �.

Definition 3. Let γ = (V, T,A,R, μ,�) be a fuzzy splicing system. Then

σf (A) = {(z, μ(z)) : (x, y) �r z ∧ μ(z) = μ(x) � μ(y)

for some (x, μ(x)), (y, μ(y)) ∈ A and r ∈ R}.

Further, for a fuzzy splicing system γ = (V, T,A,R, μ,�), we define the closure
of A under splicing with respect to rules in R and the fuzzy splicing operation
�.

24 F. Karimi et al.

Definition 4. Let γ = (V, T,A,R, μ,�) be a fuzzy splicing system. Then

σ∗
f (A) =

⋃

i≥0

σi
f (A)

where σ0
f (A) = A and σi

f (A) = σi−1
f (A) ∪ σf (σ

i−1
f (A)) for i ≥ 1.

Definition 5. The fuzzy language generated by a fuzzy splicing system γ =
(V, T,A,R, μ,�) is defined as Lf(γ) = {(z, μ(z)) ∈ σ∗

f (A) : z ∈ T ∗}.
We also define the “crisp” languages generated by fuzzy splicing systems.

Definition 6. The crisp language generated by a fuzzy splicing system γ =
(V, T,A,R, μ,�) is defined as Lc(γ) = {z : (z, μ(z)) ∈ Lf (γ)}.
Remark 1. It is clear that for every fuzzy splicing system γ = (V, T,A,R, μ,�),
L(γ′) = Lc(γ) where γ′ = (V, T,A′, R) with A′ = {x : (x, μ(x)) ∈ A}.
Example 1. We consider the fuzzy splicing system γ with multiplication opera-
tion as following,

γ = ({a, b}, {a, b}, {(aa, 1/2), (aba, 1/3)},
{r1 = a#λ$λ#b, r2 = a#λ$λ#a, r3 = b#λ$λ#b, r4 = b#λ$λ#b}).

One can easily show that Lc(γ) = a{a, b}∗a. Let us analyze the truth values
of the strings obtained by splicing the strings in A:

σ1(A) = {(aa, 1/2), (aa, 1/4), (aa, 1/6), (aba, 1/3), (aba, 1/6), (aba, 1/9),
(aaba, 1/6), (aaba, 1/9), (aaa, 1/4), (aaa, 1/6), (a3ba, 1/6),

(ababa, 1/9), (abaaba, 1/9), (abba, 1/9)}.
We can see that string aa resulted from different strings has different truth

values 1/2, 1/4, 1/6, and strings aba, aaba and aaba have also different truth
values. In order to overcome the ambiguity of truth values of strings, we can
consider another fuzzy operation.

Another approach for the elimination of ambiguity is to define threshold lan-
guages, i.e., the selection of the “successful” subset of the crispy language gener-
ated by a fuzzy splicing system with respect to some cut-points. In fact, the fuzzy
membership value of each string in the successful subset must satisfy the selected
threshold mode. Hereby, we consider two interpretation of the threshold modes:
in strong interpretation all fuzzy membership values of a string must satisfy the
threshold condition and in weak interpretation at least one fuzzy membership
value of a string must satisfy the threshold condition.

Further, we give formal definitions of threshold languages with respect to cut-
points and relations of fuzzy membership values to these cut-points. We consider
numbers α, subintervals and discrete subsets Ω (i.e., finite or countable subsets)
of [0, 1] as cut-points, and =, �=, <,>,≤,≥,∈, �∈ as relations, which are called
threshold modes.

Fuzzy Splicing Systems 25

Definition 7. Let γ = (V, T,A,R, μ,�) be a fuzzy extended splicing system.
Then, strong threshold languages generated by γ are defined as

Ls(γ, ∗α) = {z : (z, μ(z)) ∈ Lf(γ) and for all μ(z), μ(z) ∗ α},
Ls(γ, �Ω) = {z : (z, μ(z)) ∈ Lf(γ) and for all μ(z), μ(z) � Ω}

where ∗ ∈ {=, �=, >,≥, <,≤} and � ∈ {∈, /∈}.
Definition 8. Let γ = (V, T,A,R, μ,�) be a fuzzy extended splicing system.
Then, weak threshold languages generated by γ are defined as

Lw(γ, ∗α) = {z : (z, μ(z)) ∈ Lf (γ) and for some μ(z), μ(z) ∗ α},
Lw(γ, �Ω) = {z : (z, μ(z)) ∈ Lf (γ) and for some μ(z), μ(z) � Ω}

where ∗ ∈ {=, �=, >,≥, <,≤} and � ∈ {∈, /∈}.
We denote the family of strong and weak threshold languages generated by

fuzzy extended H systems of type (F1, F2) by sfEH(F1, F2) and wfEH(F1, F2),
respectively, where F1, F2 ∈ {FIN,REG,CF,LIN,CS,RE}.
Lemma 1. For all families F1, F2 ∈ {FIN,REG,CF,LIN,CS,RE},

EH(F1, F2) ⊆ xfEH(F1, F2)

where x ∈ {s, w}.
Proof. Let γ = (V, T,A,R) be an extended splicing system generating the lan-
guage L(γ) ∈ EH(FIN, F) where F ∈ {FIN,REG,CF,LIN,CS,RE}. Let
A = {x1, x2, ..., xn}, n ≥ 1. We associate the fuzzy splicing system γ′ with γ
where γ′ = (V, T,A′, R, μ,�), A′ = {(xi, 1) : xi ∈ A, 1 ≤ i ≤ n} and � is a fuzzy
operation (e.g., the multiplication operation, max or min) with the identity el-
ement 1. Then, it is not difficult to see that L(γ) = L(γ′). ��
Lemma 2. Let γ = (V, T,A,R, μ,×) be a fuzzy extended splicing system with
multiplication operation ×, where 0 < μ(x) < 1 for all x ∈ A. Let the sets A and
R are finite. Then, for x ∈ {s, w}, α ∈ [0, 1] and I ⊆ [0, 1],

1. Lx(γ,> α) is a finite language.

2. Lx(γ,≤ α) is a regular language.

3. Lx(γ,∈ I) is a regular language.

Proof. Case 1. Let γ = (V, T,A,R, μ,×) be a fuzzy splicing system where

A = {(x1, μ1), (x2, μ2), . . . , (xn, μn)}
and 0 < μi < 1 for all 1 ≤ i ≤ n. Then, it is clear that

k∏

j=1

μij >
k+1∏

j=1

μij , μij ∈ {μ1, . . . , μn}, 1 ≤ j ≤ m.

26 F. Karimi et al.

Hence, there exists m ∈ N such that

m∏

j=1

μij < α, μij ∈ {μ1, . . . , μn}, 1 ≤ j ≤ m.

Thus, a finite number of μ(x)s, x ∈ Lf(γ), can satisfy the inequality μ(x) > α.

Case 2. It is clear that for x ∈ {s, w}, Lc(γ) = Lx(γ,> α)∪Lx(γ,≤ α). Since
Lc(γ) is regular and Lx(γ,> α) is finite then Lx(γ,≤ α) is regular.

Case 3. Let I = (α1, α2). Then Lx(γ,∈ I) = Lx(γ,> α1) ∩ Lx(γ,< α2),
x ∈ {s, w}. From (i) and (ii), it follows that Lx(γ,∈ I) is regular. ��
Lemma 3. Let γ = (V, T,A,R, μ,�) be a fuzzy splicing system and Lw(γ, ∗α)
be a threshold language where � ∈ {min,max}, ∗ ∈ {>,<,=} and α ∈ [0, 1]. Let
the sets A and R are finite. Then,

1. Lw(γ, ∗α) is a regular language.

2. If α is large enough then Lw(γ,> α) = ∅ and Lw(γ,≤ α) = Lc(γ).

3. If α is small enough then Lw(γ,> α) = Lc(γ) and Lw(γ,≤ α) = ∅.
4. If I is a subsegment of [0, 1] then Lw(γ,∈ I) is regular.

Proof. Let γ = (V, T,A,R, μ,�) be a fuzzy splicing system with

A = {(x1, μ1), (x2, μ2), . . . , (xn, μn)}.
We denote by A′ the crispy part of the set of axioms, i.e., A′ = {x : (x, μ(x)) ∈

A}.
Case 1. Consider max as the fuzzy operation and > as the threshold mode.

Then, the set σ∗
f (A) can be represented as σ∗

f (A) = σ∗
f,1(A) ∪ σ∗

f,2(A) where

σ∗
f,1(A) = {(x, μ(x) ∈ σ∗

f (A) : μ(x) > α}
and

σ∗
f,2(A) = {(x, μ(x) ∈ σ∗

f (A) : μ(x) ≤ α}.
Let σ0

f,i = Ai and A′
i = {x : (x, μ(x)) ∈ Ai}, i = 1, 2. Obviously, A = A1 ∪A2

and A′ = A′
1 ∪A′

2. Let σ
∗
c,i(A) = {x : (x, μ(x)) ∈ σ∗

f,i(A)}, i = 1, 2.

We construct the splicing system γ′ = (V, T,A′
2, R) where L(γ′) = σ∗(A′

2)∩T ∗

is regular. Moreover, we show that σ∗
c,2(A) = σ∗(A′

2).

First, σ∗(A′
2) ⊆ σ∗

c,2(A) since A2 ⊆ A. On the other hand, σ∗
c,2(A) ⊆ σ∗(A′

2).
Let x /∈ σ∗(A′

2). Then, there is an axiom (x1, μ(x1)) ∈ A1 such that

((x1, μ(x1)), (x2, μ(x2))) � (z1, μ(z1)),

((z1, μ(z1)), (z2, μ(z2))) � (z3, μ(z3)),

...

((zk, μ(zk)), (zk+1, μ(zk+1))) � (x, μ(x))

Fuzzy Splicing Systems 27

where (x2, μ(x2)) ∈ A and (zi, μ(zi)) ∈ σ∗
f (A). Then,

max{μ(x1), μ(x2)} = μ(z1) > α,

...

max{μ(zk), μ(zk+1)} = μ(x) > α.

Consequently, (x, μ(x)) /∈ σ∗
f,2(A), i.e., x /∈ σ∗

c,2(A). Thus, σ
∗
c,2(A) = σ∗(A′

2). It
follows that the language Lw(γ,≤ α) = σ∗

c,2(A) ∩ T ∗ is regular.
In its turn, σ∗

c,1(A) = σ∗
c (A)−σ∗

c,2(A), and the language Lw(γ,> α) = Lc(γ)−
Lw(γ,≤ α) is also regular.

Similarly, if the fuzzy operation is min, it can also be proved that Lw(γ,> α)
and Lw(γ,≤ α) are regular.

Case 2. We choose α > max{μ1, μ2, . . . , μn}.
Case 3. We choose α < min{μ1, μ2, . . . , μn}.
Case 4. Lw(γ,∈ I) = Lw(γ,> α1)∩Lw(γ,< α2) where I = (α1, α2). From (i),

Lw(γ,> α1) and Lw(γ,< α2) are regular. Therefore, their intersection is also
regular. ��
Remark 2. It should be noted that the arguments of the proof in Lemma 3.13
cannot be used for the strong case; because Ls(γ,≤ α) ⊆ σ∗

c,2(A) ∩ T ∗, and it is
not necessary the equality holds.

From the lemmas above we obtain the following theorem.

Theorem 3. Every fuzzy splicing system with the fuzzy operation: multiplica-
tion, max or min, and the cut-point: any number in [0, 1] or any subinterval of
[0, 1] generates a regular language.

Although the threshold languages with numbers and subsegments of [0, 1]
are regular, the generative power of fuzzy splicing systems can be increased
using discrete subsets of [0, 1], i.e., functions whose codomains are subintervals
of [0, 1] as cut-points. The following examples show that, with this restriction,
the generative capacity of fuzzy splicing systems can be increased up to context-
sensitive languages.

Example 2. Let

γ = ({a, b, c, d}, {a, b}, {(cad, 1/3), (dbc, 1/2)},
{r1 = a#d$c#ad, r2 = db#c$a#b, r3 = a#d$d#b})

be a fuzzy splicing system with multiplication operation.

Then, by applying rule r1 to axiom cad, we obtain strings cand, n ≥ 1, with
μ(cand) = 1/3n. Similarly, by applying rule r2 to axiom dbc, we obtain strings
dbmc, m ≥ 1, with μ(dbmc) = 1/2m. The application of rule r3 to these strings
results in canbmc with μ(canbmc) = 1/3n · 1/2m.

28 F. Karimi et al.

Then Lc(γ) = {anbm : n,m ≥ 1} ∈ REG and

Lw(γ,= 1/5) = ∅ ∈ FIN,

Lw(γ,> 1/3) = {b} ∈ FIN,

Lw(γ,∈ {1/6n : n ≥ 1}) = {anbn : n ≥ 1} ∈ CF−REG.

One can see that the last threshold language generated by the fuzzy splicing
system is not regular. However, if we consider min or max as fuzzy operations
with the splicing system above, then the threshold languages are not more than
regular. In this case for the generated strings canbmc we have

μ(canbmc) =

{
1/3, n > 0,

1/2, n = 0.

Therefore,

Lw(γ,∈ {1/6n : n ≥ 1}) = ∅ ∈ FIN,

Lw(γ,> 1/3) = {bn : n ≥ 1} ∈ REG.

Example 3. Consider the following fuzzy splicing system with the multiplication
operation

γ = ({a, b, c, w, x, y, z}, {a, b, c}, {(xay, 1/3), (ybz, 1/5), (zcw, 1/7)},
{r1 = xa#y$x#a, r2 = yb#z$y#b, r3 = zc#w$z#c,

r4 = a#y$y#b, r5 = b#z$z#c}).

By rule r1 to the initial string xay, we obtain (xaky, 1/3k), k ≥ 1, by rule r2 to
the initial string ybz, we get (ybmz, 1/5m),m ≥ 1, by rule r3 to the initial string
zcw, we have (zcnw, 1/7n), n ≥ 1. The rules r4 and r5 the strings above result
in

[(xaky, 1/3k), (ybmz, 1/5m)] �r4 (xakbmz, 1/3k5m)

and

[(xakbmz, 1/3k5m), (zcnw, 1/7n)] �r5 (xakbmcnw, 1/3k5m7n).

Then, the fuzzy language generated by γ is

Lf (γ) = {(akbmcn, 1/3k5m7n) : k,m, n ≥ 1}.

Further, we consider the following threshold languages:

Lw(γ,> 0) = {akbmcn : k,m, n ≥ 1} ∈ REG,

Lw(γ,> 1/1055) = {akbmcn : 1 ≤ k,m, n ≤ 5} ∈ REG,

Lw(γ,∈ {1/105n : n ≥ 1}) = {anbncn : n ≥ 1} ∈ CS−CF.

Fuzzy Splicing Systems 29

4 Conclusions

In this paper, we have introduced the concept of fuzzy splicing system and
established their preliminary properties. When fuzzy splicing systems are con-
sidered with multiplication, max or min operations and subintervals of [0, 1],
they cannot increase the generative power of splicing systems. The regularity of
fuzzy splicing systems under strong interpretation remains open. If we choose
discrete sets from [0, 1], the power can be increased up to some context-sensitive
languages. On the one hand, fuzzy splicing systems allow modeling molecu-
lar uncertainty processes appearing in molecular biology, systems biology and
medicine. On the other hand, the study of fuzzy splicing systems in particular
and the fuzzy variants of other theoretical models of DNA computing makes a
significant contributions to formal language and automata theories.

Acknowledgement. This work has been supported through the Research Uni-
versity Grant (RUG) 07J41, Universiti Teknologi Malaysia and Fundamental
Research Grant Scheme FRGS13-066-0307, International Islamic University
Malaysia, Ministry of Education, Malaysia.

References

1. Adleman, L.: Molecular computation of solutions to combinatorial problems. Sci-
ence 266, 1021–1024 (1994)

2. Boneh, D., Dunworth, C., Lipton, R., Sgall, J.: On the computational power of
DNA. Discrete Applied Mathematics. Special Issue on Computational Molecular
Biology 71, 79–94 (1996)

3. Lipton, R.: Using DNA to solve NP–complete problems. Science 268, 542–545 (1995)
4. Head, T.: Formal language theory and DNA: An analysis of the generative capacity

of specific recombination behaviors. Bull. Math. Biology 49, 737–759 (1987)
5. Pixton, D.: Regularity of splicing languages. Discrete Applied Mathematics 69,

101–124 (1996)
6. Pǎun, G., Rozenberg, G., Salomaa, A.: DNA computing. New computing paradigms.

Springer-Verlag (1998)
7. Mordeson, J., Malik, D.: Fuzzy Automata and Languages. Theory and Applications.

Chapman & Hall/CRC (2002)
8. Dassow, J., Pǎun, G.: Regulated rewriting in formal language theory. Springer-

Verlag, Berlin (1989)
9. Rozenberg, G., Salomaa, A.: Handbook of formal languages, vol. 1-3. Springer, Hei-

delberg (1997)

	Fuzzy Splicing Systems
	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Conclusions
	References

