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ABSTRACT

In this paper we determine the Schur multiplier, M(G) of finite nonabelian groups of order
8q, where q is an odd prime.
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1 Introduction

The Schur multiplier M(G) was introduced in Schur’s work (Schur, 1904) on projective repre-
sentation of groups. (Karpilovsky, 1987) has shown various results on the Schur multiplier of
many groups.

Let a group G be presented as a quotient of a free group F by a normal subgroup R. Then the
Schur multiplier of G is defined to be

M(G) = (R ∩ [F, F ])/[F,R].

The Schur multiplier of a group G is isomorphic to the H2(G, Z), the second homology group
of G with coefficients. Moreover, for a finite group G, M(G) ∼= H2(G, C∗).
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(Schur, 1907) obtained the Schur multiplier for finite abelian group G = Zn1 ⊕ Zn2 ... ⊕ Znk
,

where ni+1|ni and 1 ≤ i ≤ k − 1 as follows:

M(G) = Zn2 ⊕ Z
(2)
n3

... ⊕ Z
(k−1)
nk

.

(Steinberg, 1968) computed the Schur multiplier for symplectic groups, projective symplectic
groups and some linear groups. The computation for the Schur multiplier of special linear
groups and general linear groups can be found in (Hannebauer, 1990; Huppert, 1967).

(Niroomand, 2009) obtained a bound for the Schur multiplier of nonabelian p-group of order
pn, where this bound is related to the derived subgroup of the group.

It is clear that the Schur multiplier of cyclic group is trivial and the Schur multiplier of a group of
orders p2 and p3 can be obtained easily. The Schur multiplier of the nonabelian groups of order
p2q have been computed by (Rashid, Sarmin, Erfanian and Mohd Ali, 2011), where p and q are
distinct primes. In this paper we focus on the Schur multiplier of nonabelian groups of order
8q, where q is an odd prime.

Groups, Algorithms and Programming (GAP, 2005) software has been used to verify the hand
calculation of the Schur multiplier of groups of order 8q, where q = 3, 5, 7, 11, 13 and 17.

In the following theorem, the classification of groups of order 8q which play an important rule
for proving our main theorem is stated.

Theorem 1.1. (Miah, 1975) Let G be a nonabelian group of order 8q, where q is an odd prime.
Then G is isomorphic to exactly one group of the following types:

(1.1.1) D4 × Zq, (1.1.2) Q2 × Zq,

(1.1.3) D2q × Z2, (1.1.4) Qq × Z2,

(1.1.5) Dq × Z4, (1.1.6) < a, b|a8 = bq = 1, a−1ba = b−1 >,

(1.1.7) D4q, (1.1.8) Q2q,

(1.1.9) < a, b, c|a4 = b2 = cq = 1, b−1ab = a−1, a−1ca = c−1, bc = cb >,

(1.1.10) < a, b|a8 = bq = 1, a−1ba = bα >, where α is a primitive root of α4 ≡ 1 (mod q), 4
divides q − 1,

(1.1.11) < a, b|a4 = b2 = cq = 1, ab = ba, a−1ca = cα, bc = cb >, where α is a primitive
root of α4 ≡ 1 (mod q), 4 divides q − 1,

(1.1.12) < a, b|a8 = bq = 1, a−1ba = bα >, where α is a primitive root of α8 ≡ 1 (mod q), 8
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divides q − 1,

(1.1.13) Z2 × A4, (1.1.14) SL(2, 3), (1.1.15) S4,

(1.1.16) < a, b, c, d|a4 = b2 = c2 = dq = 1, ab = ba, ac = ca, bc = cb, d−1ad = b, d−1bd =
c, d−1cd = ab > .

For the Schur multiplier of groups of order 8q we have the following theorem:

Theorem 1.2. Let G be a nonabelian group of order 8q, where q is an odd prime. Then

M(G) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 ; G is of type (1.1.2), (1.1.6), (1.1.8), (1.1.10),
(1.1.12), (1.1.14) or (1.1.16),

Z2 ; G is of type (1.1.1), (1.1.4), (1.1.5), (1.1.7),
(1.1.9), (1.1.11), (1.1.13) or (1.1.15),

Z
(3)
2 ; G is of type (1.1.3).

2 Preliminaries

This section includes some results on the Schur multiplier of groups which are used for proving
our main theorem.

Theorem 2.1. (Karpilovsky, 1987) For n ≥ 1,

M(Qn) = 1, M(Dn) =

{
1 ; n is odd
Z2 ; n is even

where Qn and Dn are generalized quaternion and dihedral groups of orders 4n and 2n, respec-
tively.

Theorem 2.2. (Karpilovsky, 1987) Let N be a normal Hall subgroup of G, i.e., (|G|, |G/N |) =
1 and T be a complement of N in G. Then M(G) ∼= M(T ) × M(N)T .

Theorem 2.3. (Karpilovsky, 1987) Let G be a finite metacyclic group < a, b|am = e, bs =
at, bab−1 = ar >, where the positive integers m, r, s and t satisfy rs ≡ 1 (mod m) and m|t(r−1)
and t|m. Then M(G) ∼= Zn, where n = (r−1,m)(1+r+r2+...+rs−1,t)

m .

Theorem 2.4. (Zassenhaus-Burnside-Holder) (Robinson, 1982)
If G is a finite group all of whose Sylow subgroups are cyclic, then G has a presentation

G =< a, b|am = bn = 1, b−1ab = ar >

where m is odd, m|rn − 1, 0 ≤ r ≤ m − 1 and (m,n(r − 1)) = 1. Conversely, in a group with
such a presentation all Sylow subgroups are cyclic. In these groups G′ and Gab are cyclic .

Theorem 2.5. (Brownand Loday, 1987) If G and H act themselves by conjugation and trivially
upon each other, then G ⊗ H ∼= G/G′ ⊗ H/H ′.

Theorem 2.6. (Karpilovsky, 1987) If G1 and G2 are finite groups, then

M(G1 × G2) = M(G1) × M(G2) × (G1 ⊗ G2).
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3 The Proof of Main Theorem

In this section we prove our main theorem as mentioned in Section 1, namely Theorem 1.2.
The classification in Theorem 1.1 is used to compute the Schur multiplier of groups of order
8q.

Proof: Let G be a group of type (1.1.1). Then G ∼= D4 × Zq. Therefore, by Theorems 2.5
and 2.6 we have the following computations:

D4 ⊗ Zq
∼= D4/D′

4 ⊗ Zq
∼= (Z2 × Z2) ⊗ Zq = 1,

M(G) = M(D4) × M(Zq) × (D4 ⊗ Zq) = Z2.

For a group of type (1.1.2), we have the following computations:

Q2 ⊗ Zq = Q2/Q′
2 ⊗ Zq = 1,

M(G) = M(Q2) × M(Zq) × (Q2 ⊗ Zq) = 1.

If G ∼= D2q × Z2 is a group of type (1.1.3), then

Dq ⊗ (Z2)2 = Dq/D′
q ⊗ (Z2)2 = Z2 ⊗ (Z2 × Z2) = Z2 × Z2,

M(G) = M(Dq) × M(Z2 × Z2) × (Dq ⊗ (Z2 × Z2)) = Z
(3)
2 .

For a group of type (1.1.4), G ∼= Qq × Z2. Then

M(G) = M(Qq) × M(Z2) × (Qq ⊗ Z2) = Z4 ⊗ Z2 = Z2.

For a group of type (1.1.5), G ∼= Dq × Z4. The proof is similar to type (1.1.4).

By choosing m = q, n = 8 and r = q − 1, the proof of type (1.1.6) is straightforward using
Theorem 2.4.

For a group of types (1.1.7) and (1.1.8), G ∼= D4q and G ∼= Q2q, respectively. Then by Theorem
2.1, M(D4q) = Z2 and M(Q2q) = 1.

For a group of type (1.1.9), G ∼= Zq � D2. Then by Theorem 2.2,

M(G) = M(D2) × M(Zq)
D2 = Z2.

For a group of type (1.1.10), by choosing m = q, s = 8, t = q, r = a and by Theorem 2.3 the
proof of this type is clear.

For a group of type (1.1.11), G′ is a cyclic group of order q and (|G′|, |Gab|) = 1. Then by
Theorem 2.2, M(G) = M(Z4 × Z2) × M(G′)Z4×Z2 . Thus M(G) = Z2.

For a group of type (1.1.12), the proof is similar to that of type (1.1.10).

International Journal of Applied Mathematics and Statistics

21



The Schur multiplier of groups of type (1.1.13) can be found in (Brown, Johnson and Robert-
son, 1987), while for the Schur multiplier of types (1.1.14) and (1.1.15) have been computed in
(Karpilovsky, 1987).

For a group of type (1.1.16), (|G′|, |Gab|) = 1. Then G ⊗ G = G′ × (Gab ⊗ Gab) = (Z2)3 × Z7.
Since |G ⊗ G| = |G||M(G)|, then M(G) = 1. �

4 Conclusion

In this paper, we have proved that if G is a nonabelian group of order 8q, where q is an odd
prime, then M(G) ∼= 1, Z2 or Z

(3)
2 .
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