Journal of Mathematics and Statistics 8 (1): 111-113, 2012 ISSN 1549-3644 © 2012 Science Publications

On the Derived Subgroups of Some Finite Groups

 ¹Rashid, S., ¹N.H. Sarmin,
 ²A. Erfanian and ¹N.M. Mohd Ali
 ¹Department of Mathematics, Faculty of Science and Ibnu Sina Institute for Fundamental Science Studies,
 University Technology Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
 ²Department of Pure Mathematics, School of Mathematical Sciences, Centre of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Masshad, Masshad, Iran

Abstract: Problem statement: In this study we focus on the derived subgroup of nonabelian 3generator groups of order p^3q , where p and q are distinct primes and p < q. Our main objective is to compute the derived subgroup for these groups up to isomorphism. **Approach:** In a group G, the derived subgroup G' = [G, G] is generated by the set of commutators of G, K (G) = {[x, y]| x, y \in G} and introduced by Dedekind. The relations of the group are used to compute the derived subgroup. **Results:** The results show that the derived subgroup of nonabelian 3-generator groups of order p^3q is a cyclic group, Q_8 or A_4 . **Conclusion/Recommendations:** The problem can be considered to compute the derived subgroup of these groups without the use of the relations.

Key words: Derived subgroup, sylow theorems, finitely generated group

INTRODUCTION

Miller (1898) introduced the derived subgroup G of a group G as the subgroup generated by K (G) = $\{[x, y] | x, y \in G\}$, the set of commutators of G. According to Miller, commutators [x, y] were introduced by Dedekind a few years earlier. Commutators can act as a tool in all of group theory. For example, commutators can be used to compute Schur multiplier, Schur multiplier of a pair and nonabelian tensor squares of groups.

Basic definitions and theorems: Includes some definitions and results on the derived subgroups of nonabelian groups.

Definition 1: Hungerford (1997) let G be a group and X a subset of G. Let $\{H_i \mid i \in I\}$ be the family of all subgroups of G which contains X. Then $\cap H_i$ is called the subgroup of G generated by the set X and is denoted by $\langle X \rangle$.

Theorem 2: Hungerford (1997) let G be a group and X a non empty subset of G. Then the subgroup $\langle X \rangle$ generated by X consists of all finite product finite product $a_1^{n} a_2^{n} a_{3}^{n} \dots a_{t}^{n} (a_i \in X, n_i \in Z)$. In particular for every $a \in G$, $\langle a \rangle = \{a^n | n \in Z\}$.

Definition 3: Hungerford (1997) let G is a group. The subgroup of G generated by the set $\{x^{-1}y^{-1}xy \mid x, y \in G\}$ is called the derived subgroup of G and denoted by G'.

Let G be a group and let $G^{(1)}$ be G[']. Then for $i \ge 1$, define $G^{(i)} = G^{(i-1)\mathbb{B}}$. The notation $G^{(i)}$ is called the ith derived subgroup of G. This gives a sequence of subgroups of G, each normal in preceding one: $G > G^{(1)} > G^{(2)} > \cdots$. Actually each $G^{(i)}$ is a normal subgroup of G.

Burnside (1911) classified all finite groups of order p^2q and Western (1898) obtained the classification of groups of order p^3q , where p and q are distinct primes.

The classification of all nonabelian 2-generator groups of order p^3q is given in the following theorem.

Theorem 4: Western (1898) Let G be a nonabelian 2generator group of order $p^3 q$, where p and q are distinct primes and p < q. Then G is exactly one group of the following types Eq. 1-6:

$$G = \langle A, Q | A^8 = Q^q = 1, A^{-1}QA = Q^{-1} >; q \equiv 1 \pmod{2}$$
(1)

Corresponding Author: Sarmin, N.H., Department of Mathematics, Faculty of Science and Ibnu Sina, Institute for Fundamental Science Studies, University Technology Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

$$G = \langle A, Q | A^8 = Q^q = 1, A^{-1}QA = Q^a \rangle$$
 (2)

where, a is any primitive root of $a4 \equiv 1 \pmod{q}$, $q \equiv 1 \pmod{4}$:

G =
$$\langle A, Q | A^8 = Q^q = 1, A^{-1}QA = Q^a \rangle$$
 (3)

where, a is any primitive root of $a8 \equiv 1 \pmod{q}$, $q \equiv 1 \pmod{8}$:

$$G = \langle A, Q | A^{p3} = Q^{q} = 1, A^{-1}QA = Q^{a} \rangle$$
 (4)

where, a is any primitive root of $ap \equiv 1 \pmod{q}$, $q \equiv 1 \pmod{p}$:

$$G = \langle A, Q | A^{p3} = Q^{q} = 1, A^{-1}QA = Q^{a} \rangle$$
 (5)

where, a is any primitive root of $ap2 \equiv 1 \pmod{q}$, $q \equiv 1 \pmod{p^2}$:

$$G = \langle A, Q | A^{p^2} = Q^q = 1, A^{-1}QA = Q^a \rangle$$
 (6)

where, a is any primitive root of $a^{p^3} \equiv 1 \pmod{q}$, $q \equiv 1 \pmod{p^3}$.

Theorem 5: Rashid *et al.* (2010) Let G be a nonabelian 2-generator group of order p^3q , where p and q are distinct primes and p < q. Then, $G' \cong C_q$, finite cyclic group of order q.

In this study, we focus on the derived subgroups of nonabelian 3-generator groups of order p^3q where p and q are distinct primes and p < q.

The classification of all nonabelian 3-generator groups of order p^3q is given in the following theorem.

Theorem 6: Western (1898) Let G be a nonabelian 3generator group of order p^3q , where p and q are distinct primes and p < q. Then G is exactly one group of the following types Eq. 7-21:

$$G = \langle A, B, Q | A^{4} = B^{2} = Q^{q} = 1,$$

BAB = A⁻¹, AQ = QA, BQ = QB > (7)

$$G = \langle A, B, Q | A^{4} = B^{4} = Q^{q} = 1,$$

$$B^{2} = A^{2} \cdot B^{-1} A B = A^{-1}, A Q = Q A, B Q = Q B \rangle$$
(8)

$$G = \langle A, B, Q | A^{4} = B^{2} = Q^{q} = 1,$$

AB = BA, AQ = QA, BQB = Q⁻¹ > (9)

$$G = \langle A, B, Q | A^{4} = B^{2} = Q^{q} = 1,$$

AB = BA, A⁻¹QA = Q⁻¹, BQ = QB > (10)

$$G = \langle A, B, Q | A^{4} = B^{2} = Q^{q} = 1,$$

BAB = A⁻¹, AQ = QA, BQB = Q⁻¹ > (11)

$$G = \langle A, B, Q | A^{4} = B^{2} = Q^{q} = 1,$$

BAB = A⁻¹, A⁻¹AQ = Q⁻¹, BQ = QB >, q = 1(mod2) (12)

$$G = \langle A, B, Q | A^{4} = B^{4} = Q^{q} = 1,$$

$$B^{2} = A^{2}, B^{-1}AB = A^{-1}AQ = QA^{3}B^{-1}QB = Q^{-1} >$$
(13)

$$G = \langle A, B, Q | A^4 = B^2 = Q^q = 1,$$

 $AB = BA, A^{-1}QA = Q^a, BQ = QB >$

where, a is any primitive root of:

$$a^{4} \equiv 1 \pmod{2} \text{ and} q \equiv 1 \pmod{4} \tag{14}$$

$$G = \langle A, B, Q | A^{4} = B^{4} = Q^{3} = 1, B^{2} = A^{2},$$

$$B^{-1}AB = A^{-1}, Q^{-1}AQ = B, Q^{-1}BQ = AB >$$
(15)

$$G = \langle A, B, Q | A^{4} = B^{4} = Q^{3} = 1,$$

BAB = A⁻¹, Q⁻¹A²B = B, A⁻¹QA = Q²A²B > (16)

$$G = \langle A, B, Q | A^{p^2} = B^p = Q^q = 1,$$

$$B^{-1}AB = A^{p+1}, AQ = QA, BQ = QB \rangle$$
(17)

 $G = < A, B, Q | A^{p^2} = B^p = Q^q = 1,$ AB = BA, AQ = QA, B⁻¹Q B = Q^a >

where, a is any primitive root of:

$$a^{p} \equiv 1 (modq) andq \equiv 1 (modp)$$
(18)

$$G = < A, B, Q | A^{p2} = B^{p} = Q^{q} = 1,$$

 $AB = BA, A^{-1}QA = Q^{a}, BQ = QB > 0$

where, a is any primitive root of:

$$a^{p} \equiv 1 (modq) andq \equiv 1 (modp)$$
(19)

$$\begin{split} & G = < A, \ B, \ Q \mid A^{p2} = \ B^{p} = \ Q^{q} = 1, \\ & B^{-1}AB \ = \ A^{p+1}, \ AQ \ = \ QA, \ B^{-1}Q \ B = \ Q^{b} > \end{split}$$

where, a is any primitive root of $a^p \equiv 1$

(20)

 $(modq), q \equiv 1 (modp) andb = a, a^2, ..., a^{p-1}$

 $G = < A, B, Q | A^{p^2} = B^p = Q^q = 1,$ $AB = BA, A^{-1}QA = Q^a, BQ = QB >$

where, a is any primitive root of $a^{p^2} \equiv 1$:

$$(modq) andq \equiv 1(modp2)$$
 (21)

Main Result:

Theorem 7: Let G be a nonabelian 3-generator group of order $p^3 q$, where p and q are distinct primes and p < q. Then $G' \cong C_2$, Cq, C_{2q} , C_p , C_{pq} , Q_8 or A₄, where Q_8 , A₄ are quaternion and alternating groups, respectively.

Proof: By Theorem 6, G has 15 types. If G is a group of type 6.1, then G has three generators A, B and Q and relations $BAB = A^{-1}$, AQ = QA and BQ = QB. For this group we can obtain the following relations:

- $A^{i}Q^{j} = Q^{j}A^{i}$; for all $i, j \in Z$
- $B^{i}Q^{j} = Q^{j}B^{i}$; for all $i, j \in Z$
- $AB = BA^{-1}, A^2B = BA^2, A^3B = BA$
- $[A, B] = A^2, [A^2, B] = 1$

Then by mentioned relations for all $x, y \in G$, [x, y]

= 1 or A^2 . Therefore, $G = \{1, A^2\}$, that is, $G \cong C_2$.

The proof of the second type is similar to the first type.

To compute the derived subgroup for a group of type 6.3, by relations AB = BA, AQ = QA, $BQB = Q^{-1}$ and tak $BA = QA^{2k}$

 $[Q^k, B] = Q^{-2k}$, we can obtain that $G' \cong C_q$.

The proof of types 6.4, 6.8, 6.12, 6.13 and 6.15 is similar to that type of 6.3.

For type 6.5, $G \cong D_{4q}$, then $G' \cong C_{2q}$.

Let G be a group of type 6.6, then by relation A^{-1} AQ = Q⁻¹ it is clear that $|G'| \ge pq$ and relation, BAB = A^{-1} shows that 1, $A^2 \in G'$. Thus |G'| = 2q and $G' \cong < BQ$ >, that is, $G' \cong C_{2q}$.

For proving 6.7, we can use the method that we used in type 6.6.

For a group of type 6.9, $G \cong SL(2, 3)$, where SL (2, 3) =< a, b, c | $a^3 = b^3 = c^2 = abc>$. So $G \cong Q_8$.

To compute G' for a group of type 6.10, by the number of generators and relations it is an immediate consequence that $G \cong S4$. Therefore, $G' \cong A_4$.

Let G be a group of type 6.11, then relations $A^{p^2} = B^p = Q^q = 1$, $B^{-1}AB = A^{p+1}$, AQ = QA, BQ = QB show that G is isomorphic to C_p .

Finally, for a group of type 6.14, the relations $A^{p2} = B^p = Q^q = 1$, $B^{-1}AB = A^{p+1}$, AQ = QA, $B^{-1}Q B = Q^b$ show that |G'| = pq and by computing the commutators, G' is a cyclic group of order pq. \Box

REFERENCES

- Burnside, W., 1911. Theory of Groups of Finite Orde. 2nd Edn., The University Press, Cambridge, pp: 512.
- Hungerford, T.W., 1997. Abstract Algebra: An introduction. 2nd Edn., Saunders College Publishing, Philadelphia, ISBN-10: 0030105595 pp: 588.
- Miller, G.A., 1898. On the Commutator Groups. Bull. Amer. Math. Soc., 4: 135-139.
- Rashid, S., N.H. Sarmin, A. Erfania and N.M. Mohd Ali, 2010. The commutator subgroups of groups order of p3q. Proceedings of the RAFSS, (RAFSS' 10), pp: 492-495.
- Western, A.E., 1898. Groups of order p3q, Proc. London Math. Soc., 30: 209-263. DOI: 10.1112/plms/s1-30.1.209