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Abstract: Problem statement: In this study we focus on the derived subgroup of nonabelian 3-
generator groups of order p3q, where p and q are distinct primes and p < q. Our main objective is to 
compute the derived subgroup for these groups up to isomorphism. Approach: In a group G, the 
derived subgroup G' = [G, G] is generated by the set of commutators of G, K (G) = {[x, y]| x, y ∈ G} 
and introduced by Dedekind. The relations of the group are used to compute the derived subgroup. 
Results: The results show that the derived subgroup of nonabelian 3-generator groups of order p3q is a 
cyclic group, Q8 or A4. Conclusion/Recommendations: The problem can be considered to compute 
the derived subgroup of these groups without the use of the relations. 
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INTRODUCTION 

 
 Miller (1898) introduced the derived subgroup G′ 

of a group G as the subgroup generated by K (G) = 
{[x, y]| x, y ∈ G}, the set of commutators of G. 
According to Miller, commutators [x, y] were 
introduced by Dedekind a few years earlier. 
Commutators can act as a tool in all of group theory. 
For example, commutators can be used to compute 
Schur multiplier, Schur multiplier of a pair and 
nonabelian tensor squares of groups. 
 
Basic definitions and theorems: Includes some 
definitions and results on the derived subgroups of 
nonabelian groups. 
 
Definition 1: Hungerford (1997) let G be a group and 
X a subset of G. Let {Hi | i ∊ I} be the family of all 
subgroups of G which contains X. Then ∩Hi is called 
the subgroup of G generated by the set X  and is 
denoted by < X >. 
 
Theorem 2: Hungerford (1997) let G be a group and 
X a non empty subset of G. Then the subgroup < X > 
generated by X consists of all finite product finite 
product a1

n
1a2

n
2a3

n
3…at

n
t (ai ∈ X, ni ∈ Z). In particular 

for every a ∈ G, < a > = {a n| n ∈ Z}.   

Definition 3: Hungerford (1997) let G is a group. The 
subgroup of G generated by the set {x-1y-1xy | x, y ∈ 
G} is called the derived subgroup of G and denoted by 
G′. 
 Let G be a group and let G(1) be G′. Then for i ≥ 1, 
define G(i) = G(i-1)ʹ. The notation G(i) is called the ith 
derived subgroup of G. This gives a sequence of 
subgroups of G, each normal in preceding one: G > G(1) 

> G(2) > ···. Actually each G(i) is a normal subgroup of 
G. 
 Burnside (1911) classified all finite groups of order 
p2q and Western (1898) obtained the classification of 
groups of order p3q, where p and q are distinct primes. 
 The classification of all nonabelian 2-generator 
groups of order p3q is given in the following 
theorem. 

 
Theorem 4: Western (1898) Let G be a nonabelian 2-
generator group of order p3 q, where p and q are distinct 
primes and p < q. Then G is exactly one group of the 
following types Eq. 1-6: 
 

( )

8 q

1 1

G  A,  Q | A  Q 1,

 A QA  Q ;q 1 mod 2− −

= < = =

= > ≡
 (1) 
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8 q 1 aG  A,  Q | A  Q 1,  A QA  Q−= < = = = >  (2) 
 
where, a is any primitive root of a4 ≡ 1(mod q), q ≡ 1 
(mod 4): 
 

8 q 1 aG  A,  Q | A  Q 1,  A QA  Q−= < = = = >  (3) 
 
where, a is any primitive root of a8 ≡ 1 (mod q), q ≡ 1 
(mod 8): 
 

p3 q 1 aG  A,  Q | A  Q 1,  A QA  Q−= < = = = >  (4) 
 
where, a is any primitive root of ap ≡ 1 (mod q), q ≡ 1 
(mod p): 
 

p3 q 1 aG  A,  Q | A  Q 1,A QA  Q−= < = = = >  (5) 
 
where, a is any primitive root of ap2 ≡ 1 (mod q), q ≡ 1 
(mod p2): 
 

p2 q 1 aG  A,  Q | A  Q 1,  A QA  Q−= < = = = >  (6) 
  
where, a is any primitive root of ap3 ≡ 1 (mod q), q ≡ 1 
(mod p3). 
 
Theorem 5: Rashid et al. (2010) Let G be a nonabelian 
2-generator group of order p3q, where p and q are 

distinct primes and p < q. Then, G′ ∼= Cq, finite cyclic 
group of order q. 
 In this study, we focus on the derived subgroups of 
nonabelian 3-generator groups of order p3q where p and 
q are distinct primes and p < q. 
 The classification of all nonabelian 3-generator 
groups of order p3q is given in the following 
theorem. 

 
Theorem 6: Western (1898) Let G be a nonabelian 3-
generator group of order p3q, where p and q are distinct 
primes and p < q. Then G is exactly one group of the 
following types Eq. 7-21: 
 

4 2 q

1

G  A,  B,  Q | A  B  Q 1,  

BAB  A ,  AQ  QA,  BQ  QB −

= < = = =
= = = >

 (7) 

 
4 4 q

2 2, 1 1

G  A,  B,  Q | A  B  Q 1,  

B  A B AB  A ,  AQ  QA,  BQ  QB− −

= < = = =
= = = = >

 (8) 

 
4 2 q

 1

G  A,  B,  Q | A  B  Q 1,  

AB  BA,  AQ  QA,  BQB  Q−

= < = = =
= = = >

 (9) 

4 2 q

1 1

G  A,  B,  Q | A  B  Q 1,  

AB  BA, A QA  Q ,  BQ  QB− −

= < = = =
= = = >

 (10) 

 
4 2 q

 1 1

G  A,  B,  Q | A  B  Q 1,  

BAB  A ,  AQ  QA,  BQB  Q− −

= < = = =
= = = >

 (11) 

 
4 2 q

1 1 1

G  A,  B,  Q | A  B  Q 1,

 BAB  A ,A AQ  Q ,  BQ  QB ,q 1(mod2)− − −

= < = = =
= = = > ≡

 (12) 

 
4 4 q

2 2 1 1, , 1 1

G  A,  B,  Q | A  B  Q 1,

 B  A ,  B AB  A AQ  QA B QB  Q− − − −

= < = = =
= = = = >

 (13) 

 
4 2 q

1 a

G  A,  B,  Q | A  B  Q 1,  

AB  BA,  A QA  Q ,  BQ  QB−

= < = = =
= = = >

 

 
where, a is any primitive root of: 
  

( ) ( )4a 1 modq andq 1 mod4≡ ≡  (14) 

 
4 4 3 2 2

1 1 1 1

G  A,  B,  Q | A  B  Q 1,  B  A ,  

B AB  A , Q AQ  B,  Q BQ  AB− − − −

= < = = = =
= = = >

 (15) 

 
4 4 3

1 1 2 1 2 2

G  A,  B,  Q | A  B  Q 1,  

BAB  A ,Q A B B, A QA  Q A B− − −

= < = = =
= = = >

 (16) 

 
p2 p q

1 p 1

G  A,  B,  Q | A  B  Q 1,

 B AB  A ,  AQ  QA,  BQ  QB− +

= < = = =
= = = >

 (17) 

 
p2 p q

1 a

G  A,  B,  Q | A  B  Q 1,  

AB  BA,  AQ  QA,  B Q B  Q−

= < = = =
= = = >

 

  
where, a is any primitive root of: 
 

( ) ( )pa 1 modq andq 1 modp≡ ≡  (18) 

 
p2 p q

1 a

G A,  B,  Q | A  B  Q 1,  

AB  BA,A QA  Q ,  BQ  QB−

=< = = =
= = = >

 

  
where, a is any primitive root of: 
 

( ) ( )pa 1 modq andq 1 modp≡ ≡  (19) 

 
p2 p q

1 p 1 1 b

G A, B,  Q | A  B  Q 1,  

B AB  A ,  AQ  QA,  B Q B  Q− + −

=< = = =
= = = >

 

  
where, a is any primitive root of ap ≡ 1  
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( ) ( ) 2 p 1modq ,q 1 modp  andb a,  a ,  ,  a−≡ = …  (20) 

 
p2 p q

1 a

G A,  B,  Q | A  B  Q 1,  

AB  BA,A QA  Q ,  BQ  QB−

=< = = =
= = = >

 

  
where, a is any primitive root of ap2 ≡ 1: 
 
( ) ( )2modq  andq 1 modp≡  (21) 

 
Main Result:  
Theorem 7: Let G be a nonabelian 3-generator group 
of order p3 q, where p and q are distinct primes and p < 

q. Then G′ ∼= C2, Cq, C2q, Cp, Cpq, Q8 or A4, where Q8, 
A4 are quaternion and alternating groups, respectively. 
 
Proof: By Theorem 6, G has 15 types. If G is a group 
of type 6.1, then G has three generators A, B and Q 
and relations BAB = A-1, AQ = QA and BQ = QB. For 
this group we can obtain the following relations: 
 
• A iQj = QjA i ; for all i, j ∈ Z 
• BiQj = QjBi; for all i, j ∈ Z 
• AB = BA-1 , A2B = BA2, A3B = BA 
• [A, B] = A2, [A2 , B] = 1  
 
 Then by mentioned relations for all x, y ∈ G, [x, y] 

= 1 or A2. Therefore, G′ = {1, A2}, that is, G′ ∼= C2. 
 The proof of the second type is similar to the 
first type. 
 To compute the derived subgroup for a group of type 
6.3, by relations AB = BA, AQ = QA, BQB = Q-1 and 

[Qk, B] = Q-2k, we can obtain that G′ ∼= Cq. 
 The proof of types 6.4, 6.8, 6.12, 6.13 and 6.15 
is similar to that type of 6.3. 

 For type 6.5, G ∼= D4q, then G′ ∼= C2q. 
 Let G be a group of type 6.6, then by relation A-1 
AQ = Q-1 it is clear that | G′ | ≥ pq and relation, BAB = 

A-1 shows that 1, A2 ∈G′. Thus | G′ | = 2q and G′ ∼= < BQ 

>, that is, G′ ∼= C2q.  
 For proving 6.7, we can use the method that we 
used in type 6.6. 

 For a group of type 6.9, G ∼= SL (2, 3), where SL 

(2, 3) =< a, b, c | a3 = b3 = c2 = abc>. So G′ ∼= Q8. 

 To compute G′ for a group of type 6.10, by the 
number of generators and relations it is an immediate 

consequence that G ∼= S4. Therefore, G′ ∼= A4.  
 Let G be a group of type 6.11, then relations Ap2 = 
Bp = Qq = 1, B-1AB  = Ap+1, AQ = QA, BQ = QB show 
that G′ is isomorphic to Cp. 

 Finally, for a group of type 6.14, the relations Ap2 

= Bp = Qq = 1, B-1AB  = Ap+1, AQ = QA,  
B-1Q B= Qb show that | G′ | = pq and by computing the 
commutators, G′ is a cyclic group of order pq. □ 
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