On the Derived Subgroups of Some Finite Groups

${ }^{1}$ Rashid, S., ${ }^{1}$ N.H. Sarmin,
${ }^{2}$ A. Erfanian and ${ }^{1}$ N.M. Mohd Ali
${ }^{1}$ Department of Mathematics, Faculty of Science and Ibnu Sina
Institute for Fundamental Science Studies, University Technology Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
${ }^{2}$ Department of Pure Mathematics, School of Mathematical Sciences, Centre of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Masshad, Masshad, Iran

Abstract

Problem statement: In this study we focus on the derived subgroup of nonabelian 3generator groups of order $\mathrm{p}^{3} \mathrm{q}$, where p and q are distinct primes and $\mathrm{p}<\mathrm{q}$. Our main objective is to compute the derived subgroup for these groups up to isomorphism. Approach: In a group G, the derived subgroup $G^{\prime}=[G, G]$ is generated by the set of commutators of $G, K(G)=\{[x, y] \mid x, y \in G\}$ and introduced by Dedekind. The relations of the group are used to compute the derived subgroup. Results: The results show that the derived subgroup of nonabelian 3-generator groups of order $\mathrm{p}^{3} \mathrm{q}$ is a cyclic group, Q_{8} or A_{4}. Conclusion/Recommendations: The problem can be considered to compute the derived subgroup of these groups without the use of the relations.

Key words: Derived subgroup, sylow theorems, finitely generated group

INTRODUCTION

Miller (1898) introduced the derived subgroup G^{\prime} of a group G as the subgroup generated by $K(G)=$ $\{[\mathrm{x}, \mathrm{y}] \mid \mathrm{x}, \mathrm{y} \in \mathrm{G}\}$, the set of commutators of G . According to Miller, commutators $[x, y]$ were introduced by Dedekind a few years earlier. Commutators can act as a tool in all of group theory. For example, commutators can be used to compute Schur multiplier, Schur multiplier of a pair and nonabelian tensor squares of groups.

Basic definitions and theorems: Includes some definitions and results on the derived subgroups of nonabelian groups.

Definition 1: Hungerford (1997) let G be a group and X a subset of G. Let $\left\{\mathrm{H}_{\mathrm{i}} \mid \mathrm{i} \in \mathrm{I}\right\}$ be the family of all subgroups of G which contains X. Then $\cap \mathrm{H}_{\mathrm{i}}$ is called the subgroup of G generated by the set \mathbf{X} and is denoted by $\langle\mathrm{X}\rangle$.

Theorem 2: Hungerford (1997) let G be a group and X a non empty subset of G. Then the subgroup $\langle X>$ generated by X consists of all finite product finite product $\mathrm{a}_{1}{ }_{1} \mathrm{a}_{2}{ }_{2}{ }_{2} a_{3}{ }_{3}{ }_{3} \ldots a_{t}{ }^{n}{ }_{t}\left(a_{i} \in X, n_{i} \in Z\right)$. In particular for every $a \in G,\langle a\rangle=\left\{a^{n} \mid n \in Z\right\}$.

Definition 3: Hungerford (1997) let G is a group. The subgroup of G generated by the set $\left\{x^{-1} y^{-1} x y \mid x, y \in\right.$ $G\}$ is called the derived subgroup of G and denoted by G^{\prime}.

Let G be a group and let $\mathrm{G}^{(1)}$ be G^{\prime}. Then for $\mathrm{i} \geq 1$, define $G^{(i)}=G^{(i-1)]^{[}}$. The notation $G^{(i)}$ is called the ith derived subgroup of G. This gives a sequence of subgroups of G, each normal in preceding one: $G>G^{(1)}$ $>\mathrm{G}^{(2)}>\cdots$. Actually each $\mathrm{G}^{(\mathrm{i})}$ is a normal subgroup of G.

Burnside (1911) classified all finite groups of order $p^{2} q$ and Western (1898) obtained the classification of groups of order $\mathrm{p}^{3} \mathrm{q}$, where p and q are distinct primes.

The classification of all nonabelian 2-generator groups of order $\mathrm{p}^{3} \mathrm{q}$ is given in the following theorem.

Theorem 4: Western (1898) Let G be a nonabelian 2generator group of order $\mathrm{p}^{3} \mathrm{q}$, where p and q are distinct primes and $\mathrm{p}<\mathrm{q}$. Then G is exactly one group of the following types Eq. 1-6:

$$
\begin{align*}
& \mathrm{G}=<\mathrm{A}, \mathrm{Q} \mid \mathrm{A}^{8}=\mathrm{Q}^{\mathrm{q}}=1 \\
& \mathrm{~A}^{-1} \mathrm{QA}=\mathrm{Q}^{-1}>; \mathrm{q} \equiv 1(\bmod 2) \tag{1}
\end{align*}
$$

Corresponding Author: Sarmin, N.H., Department of Mathematics, Faculty of Science and Ibnu Sina, Institute for Fundamental Science Studies, University Technology Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
$\mathrm{G}=<\mathrm{A}, \mathrm{Q}\left|\mathrm{A}^{8}=\mathrm{Q}^{\mathrm{q}}=1, \mathrm{~A}^{-1} \mathrm{QA}=\mathrm{Q}^{\mathrm{a}}\right\rangle$
where, a is any primitive root of $a 4 \equiv 1(\bmod q), q \equiv 1$ $(\bmod 4)$:
$\mathrm{G}=<\mathrm{A}, \mathrm{Q}\left|\mathrm{A}^{8}=\mathrm{Q}^{\mathrm{q}}=1, \mathrm{~A}^{-1} \mathrm{QA}=\mathrm{Q}^{\mathrm{a}}\right\rangle$
where, a is any primitive root of $\mathrm{a} 8 \equiv 1(\bmod \mathrm{q}), \mathrm{q} \equiv 1$ $(\bmod 8)$:
$\mathrm{G}=\left\langle\mathrm{A}, \mathrm{Q} \mid \mathrm{A}^{\mathrm{p} 3}=\mathrm{Q}^{\mathrm{q}}=1, \mathrm{~A}^{-1} \mathrm{QA}=\mathrm{Q}^{\mathrm{a}}\right\rangle$
where, a is any primitive root of $a p \equiv 1(\bmod q), q \equiv 1$ $(\bmod p)$:
$\mathrm{G}=\left\langle\mathrm{A}, \mathrm{Q} \mid \mathrm{A}^{\mathrm{p} 3}=\mathrm{Q}^{\mathrm{q}}=1, \mathrm{~A}^{-1} \mathrm{QA}=\mathrm{Q}^{\mathrm{a}}\right\rangle$
where, a is any primitive root of $\mathrm{ap} 2 \equiv 1(\bmod q), q \equiv 1$ $\left(\bmod \mathrm{p}^{2}\right)$:

$$
\begin{equation*}
\mathrm{G}=\left\langle\mathrm{A}, \mathrm{Q} \mid \mathrm{A}^{\mathrm{p} 2}=\mathrm{Q}^{\mathrm{q}}=1, \mathrm{~A}^{-1} \mathrm{QA}=\mathrm{Q}^{\mathrm{a}}\right\rangle \tag{6}
\end{equation*}
$$

where, a is any primitive root of $\mathrm{a}^{\mathrm{p} 3} \equiv 1(\bmod q), \mathrm{q} \equiv 1$ $\left(\bmod \mathrm{p}^{3}\right)$.

Theorem 5: Rashid et al. (2010) Let G be a nonabelian 2-generator group of order $\mathrm{p}^{3} \mathrm{q}$, where p and q are distinct primes and $\mathrm{p}<\mathrm{q}$. Then, $\mathrm{G}^{\prime} \cong \mathrm{C}_{\mathrm{q}}$, finite cyclic group of order q.

In this study, we focus on the derived subgroups of nonabelian 3-generator groups of order $p^{3} q$ where p and q are distinct primes and $\mathrm{p}<\mathrm{q}$.

The classification of all nonabelian 3-generator groups of order $p^{3} q$ is given in the following theorem.

Theorem 6: Western (1898) Let G be a nonabelian 3generator group of order $\mathrm{p}^{3} \mathrm{q}$, where p and q are distinct primes and $\mathrm{p}<\mathrm{q}$. Then G is exactly one group of the following types Eq. 7-21:

$$
\begin{aligned}
& \mathrm{G}=<\mathrm{A}, \mathrm{~B}, \mathrm{Q} \mid \mathrm{A}^{4}=\mathrm{B}^{2}=\mathrm{Q}^{\mathrm{q}}=1, \\
& \mathrm{BAB}=\mathrm{A}^{-1}, \mathrm{AQ}=\mathrm{QA}, \mathrm{BQ}=\mathrm{QB}> \\
& \mathrm{G}=<\mathrm{A}, \mathrm{~B}, \mathrm{Q} \mid \mathrm{A}^{4}=\mathrm{B}^{4}=\mathrm{Q}^{\mathrm{q}}=1, \\
& \mathrm{~B}^{2}=\mathrm{A}^{2} \mathrm{~B}^{-1} \mathrm{AB}=\mathrm{A}^{-1}, \mathrm{AQ}=\mathrm{QA}, \mathrm{BQ}=\mathrm{QB}> \\
& \mathrm{G}=<\mathrm{A}, \mathrm{~B}, \mathrm{Q} \mid \mathrm{A}^{4}=\mathrm{B}^{2}=\mathrm{Q}^{\mathrm{q}}=1, \\
& \mathrm{AB}=\mathrm{BA}, \mathrm{AQ}=\mathrm{QA}, \mathrm{BQB}=\mathrm{Q}^{-1}>
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{G}=<\mathrm{A}, \mathrm{~B}, \mathrm{Q} \mid \mathrm{A}^{4}=\mathrm{B}^{2}=\mathrm{Q}^{\mathrm{q}}=1, \tag{10}\\
& \mathrm{AB}=\mathrm{BA}, \mathrm{~A}^{-1} \mathrm{QA}=\mathrm{Q}^{-1}, \mathrm{BQ}=\mathrm{QB}> \\
& \mathrm{G}=<\mathrm{A}, \mathrm{~B}, \mathrm{Q} \mid \mathrm{A}^{4}=\mathrm{B}^{2}=\mathrm{Q}^{\mathrm{q}}=1, \tag{11}\\
& \mathrm{BAB}=\mathrm{A}^{-1}, \mathrm{AQ}=\mathrm{QA}, \mathrm{BQB}=\mathrm{Q}^{-1}> \\
& \mathrm{G}=<\mathrm{A}, \mathrm{~B}, \mathrm{Q} \mid \mathrm{A}^{4}=\mathrm{B}^{2}=\mathrm{Q}^{\mathrm{q}}=1, \\
& \mathrm{BAB}=\mathrm{A}^{-1}, \mathrm{~A}^{-1} \mathrm{AQ}=\mathrm{Q}^{-1}, \mathrm{BQ}=\mathrm{QB}>, \mathrm{q} \equiv 1(\bmod 2) \tag{12}\\
& \mathrm{G}=<\mathrm{A}, \mathrm{~B}, \mathrm{Q} \mid \mathrm{A}^{4}=\mathrm{B}^{4}=\mathrm{Q}^{\mathrm{q}}=1, \tag{13}\\
& \mathrm{~B}^{2}=\mathrm{A}^{2}, \mathrm{~B}^{-1} \mathrm{AB}=\mathrm{A}^{-1,} \mathrm{AQ}=\mathrm{QA} \mathrm{~B}^{-1} \mathrm{QB}=\mathrm{Q}^{-1}> \\
& \mathrm{G}=<\mathrm{A}, \mathrm{~B}, \mathrm{Q} \mid \mathrm{A}^{4}=\mathrm{B}^{2}=\mathrm{Q}^{\mathrm{q}}=1, \\
& \mathrm{AB}=\mathrm{BA}, \mathrm{~A}^{-1} \mathrm{QA}=\mathrm{Q}^{\mathrm{a}}, \mathrm{BQ}=\mathrm{QB}>
\end{align*}
$$

where, a is any primitive root of:
$\mathrm{a}^{4} \equiv 1(\operatorname{modq}) \mathrm{andq} \equiv 1(\bmod 4)$
$\mathrm{G}=<\mathrm{A}, \mathrm{B}, \mathrm{Q} \mid \mathrm{A}^{4}=\mathrm{B}^{4}=\mathrm{Q}^{3}=1, \mathrm{~B}^{2}=\mathrm{A}^{2}$,
$B^{-1} A B=A^{-1}, Q^{-1} A Q=B, Q^{-1} B Q=A B>$
$\mathrm{G}=<\mathrm{A}, \mathrm{B}, \mathrm{Q} \mid \mathrm{A}^{4}=\mathrm{B}^{4}=\mathrm{Q}^{3}=1$,
$B A B=A^{-1}, Q^{-1} A^{2} B=B, A^{-1} Q A=Q^{2} A^{2} B>$
$\mathrm{G}=<\mathrm{A}, \mathrm{B}, \mathrm{Q} \mid \mathrm{A}^{\mathrm{p} 2}=\mathrm{B}^{\mathrm{p}}=\mathrm{Q}^{\mathrm{q}}=1$,
$\mathrm{B}^{-1} \mathrm{AB}=\mathrm{A}^{\mathrm{p}+1}, \mathrm{AQ}=\mathrm{QA}, \mathrm{BQ}=\mathrm{QB}>$
$\mathrm{G}=<\mathrm{A}, \mathrm{B}, \mathrm{Q} \mid \mathrm{A}^{\mathrm{p} 2}=\mathrm{B}^{\mathrm{p}}=\mathrm{Q}^{\mathrm{q}}=1$,
$\mathrm{AB}=\mathrm{BA}, \mathrm{AQ}=\mathrm{QA}, \mathrm{B}^{-1} \mathrm{QB}=\mathrm{Q}^{\mathrm{a}}>$
where, a is any primitive root of:
$\mathrm{a}^{\mathrm{p}} \equiv 1(\operatorname{modq})$ andq $\equiv 1(\operatorname{modp})$
$\mathrm{G}=<\mathrm{A}, \mathrm{B}, \mathrm{Q} \mid \mathrm{A}^{\mathrm{p} 2}=\mathrm{B}^{\mathrm{p}}=\mathrm{Q}^{\mathrm{q}}=1$,
$\mathrm{AB}=\mathrm{BA}, \mathrm{A}^{-1} \mathrm{QA}=\mathrm{Q}^{\mathrm{a}}, \mathrm{BQ}=\mathrm{QB}>$
where, a is any primitive root of:
$\mathrm{a}^{\mathrm{p}} \equiv 1(\operatorname{modq})$ andq $\equiv 1(\operatorname{modp})$
$\mathrm{G}=<\mathrm{A}, \mathrm{B}, \mathrm{Q} \mid \mathrm{A}^{\mathrm{p} 2}=\mathrm{B}^{\mathrm{p}}=\mathrm{Q}^{\mathrm{q}}=1$,
$\mathrm{B}^{-1} \mathrm{AB}=\mathrm{A}^{\mathrm{p}+1}, \mathrm{AQ}=\mathrm{QA}, \mathrm{B}^{-1} \mathrm{Q} B=\mathrm{Q}^{\mathrm{b}}>$
where, a is any primitive root of $\mathrm{a}^{\mathrm{p}} \equiv 1$

$$
\begin{equation*}
(\operatorname{modq}), q \equiv 1(\bmod p) \operatorname{andb}=a, a^{2}, \ldots, a^{p-1} \tag{20}
\end{equation*}
$$

$\mathrm{G}=<\mathrm{A}, \mathrm{B}, \mathrm{Q} \mid \mathrm{A}^{\mathrm{p} 2}=\mathrm{B}^{\mathrm{p}}=\mathrm{Q}^{\mathrm{q}}=1$,
$\mathrm{AB}=\mathrm{BA}, \mathrm{A}^{-1} \mathrm{QA}=\mathrm{Q}^{\mathrm{a}}, \mathrm{BQ}=\mathrm{QB}>$
where, a is any primitive root of $\mathrm{a}^{\mathrm{p} 2} \equiv 1$:
(modq) andq $\equiv 1\left(\operatorname{modp}^{2}\right)$

Main Result:

Theorem 7: Let G be a nonabelian 3-generator group of order $\mathrm{p}^{3} \mathrm{q}$, where p and q are distinct primes and $\mathrm{p}<$ q . Then $\mathrm{G}^{\prime} \cong \mathrm{C}_{2}, \mathrm{Cq}, \mathrm{C}_{2 \mathrm{q}}, \mathrm{C}_{\mathrm{p}}, \mathrm{C}_{\mathrm{pq}}, \mathrm{Q}_{8}$ or A_{4}, where Q_{8}, A_{4} are quaternion and alternating groups, respectively.

Proof: By Theorem 6, G has 15 types. If G is a group of type 6.1, then G has three generators A, B and Q and relations $\mathrm{BAB}=\mathrm{A}^{-1}, \mathrm{AQ}=\mathrm{QA}$ and $\mathrm{BQ}=\mathrm{QB}$. For this group we can obtain the following relations:

- $\quad A^{i} Q^{j}=Q^{j} A^{i}$; for all $i, j \in Z$
- $\quad B^{i} Q^{j}=Q^{j} B^{i}$; for all $i, j \in Z$
- $\mathrm{AB}=\mathrm{BA}^{-1}, \mathrm{~A}^{2} \mathrm{~B}=\mathrm{BA}^{2}, \mathrm{~A}^{3} \mathrm{~B}=\mathrm{BA}$
- $\quad[A, B]=A^{2},\left[\mathrm{~A}^{2}, B\right]=1$

Then by mentioned relations for all $x, y \in G,[x, y]$
$=1$ or A^{2}. Therefore, $\mathrm{G}^{\prime}=\left\{1, \mathrm{~A}^{2}\right\}$, that is, $\mathrm{G}^{\prime} \cong \mathrm{C}_{2}$.
The proof of the second type is similar to the first type.

To compute the derived subgroup for a group of type 6.3, by relations $\mathrm{AB}=\mathrm{BA}, \mathrm{AQ}=\mathrm{QA}, \mathrm{BQB}=\mathrm{Q}^{-1}$ and $\left[Q^{k}, B\right]=Q^{-2 k}$, we can obtain that $\mathrm{G}^{\prime} \cong \mathrm{C}_{\mathrm{q}}$.

The proof of types $6.4,6.8,6.12,6.13$ and 6.15 is similar to that type of 6.3.

For type $6.5, G \cong D_{4 q}$, then $\mathrm{G}^{\prime} \cong \mathrm{C}_{2 q}$.
Let G be a group of type 6.6 , then by relation A^{-1} $A Q=Q^{-1}$ it is clear that $\left|\mathrm{G}^{\prime}\right| \geq \mathrm{pq}$ and relation, $\mathrm{BAB}=$ A^{-1} shows that $1, A^{2} \in G^{\prime}$. Thus $\left|G^{\prime}\right|=2 q$ and $G^{\prime} \cong<B Q$ $>$, that is, $\mathrm{G}^{\prime} \cong \mathrm{C}_{2 \mathrm{q}}$.

For proving 6.7, we can use the method that we used in type 6.6.

For a group of type $6.9, \mathrm{G} \cong \operatorname{SL}(2,3)$, where SL $(2,3)=\left\langle a, b, c \mid a^{3}=b 3=c^{2}=a b c\right\rangle$. So $G^{\prime} \cong Q_{8}$.

To compute G^{\prime} for a group of type 6.10 , by the number of generators and relations it is an immediate consequence that $\mathrm{G} \cong \mathrm{S} 4$. Therefore, $\mathrm{G}^{\prime} \cong \mathrm{A}_{4}$.

Let G be a group of type 6.11 , then relations $A^{p 2}=$ $\mathrm{B}^{\mathrm{p}}=\mathrm{Q}^{\mathrm{q}}=1, \mathrm{~B}^{-1} \mathrm{AB}=\mathrm{A}^{\mathrm{p}+1}, \mathrm{AQ}=\mathrm{QA}, \mathrm{BQ}=\mathrm{QB}$ show that G^{\prime} is isomorphic to C_{p}.

Finally, for a group of type 6.14 , the relations $A^{p 2}$ $=\mathrm{B}^{\mathrm{p}}=\mathrm{Q}^{\mathrm{q}}=1, \mathrm{~B}^{-1} \mathrm{AB}=\mathrm{A}^{\mathrm{p}+1}, \mathrm{AQ}=\mathrm{QA}$,
$\mathrm{B}^{-1} \mathrm{Q} \mathrm{B}=\mathrm{Q}^{\mathrm{b}}$ show that $\left|\mathrm{G}^{\prime}\right|=\mathrm{pq}$ and by computing the commutators, G^{\prime} is a cyclic group of order pq. \square

REFERENCES

Burnside, W., 1911. Theory of Groups of Finite Orde. 2nd Edn., The University Press, Cambridge, pp: 512.

Hungerford, T.W., 1997. Abstract Algebra: An introduction. 2nd Edn., Saunders College Publishing, Philadelphia, ISBN-10: 0030105595 pp: 588.
Miller, G.A., 1898. On the Commutator Groups. Bull. Amer. Math. Soc., 4: 135-139.
Rashid, S., N.H. Sarmin, A. Erfania and N.M. Mohd Ali, 2010. The commutator subgroups of groups order of p3q. Proceedings of the RAFSS, (RAFSS' 10), pp: 492-495.

Western, A.E., 1898. Groups of order p3q, Proc. London Math. Soc., 30: 209-263. DOI: 10.1112/plms/s1-30.1.209

