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Abstract. A group G is said to be capable if it is isomorphic to the central
factor group H/Z(H) for some group H. Let G be a nonabelian group of
order p?q for distinct primes p and g. In this paper, we compute the non-
abelian tensor square of the group G. It is also shown that G is capable
if and only if either Z(G) =1 or p < q and G** = Z,, x Z,,.

Mathematics Subject Classification (2010). Primary 20F12;
Secondary 20J06, 19C09.

Keywords. Multiplicator, Nonabelian tensor square, Capable groups.

1. Introduction. The nonabelian tensor square G®G of the group G is a group
generated by the symbols g ® h

99 @h= (%' ®9h) (g h), g@hh'=(gah)("ga"h)

for all g,¢',h,h’ € G, where 9¢' = gg’g~'. The nonabelian tensor square

is a special case of the nonabelian tensor product, which has its origin in
homotopy theory and was introduced by Brown and Loday [6,7]. The exterior
square G A GG is obtained by imposing the additional relations g ® g = 1 for
all g € G on G ® G, with 1g being the identity of G ® G. The commutator
map induces homomorphisms x : G ® G — G and v’ : G A G — G, sending
g®@h and g Ah, respectively, to [g,h] = ghg~'h~tand J5(G) denotes the kernel
of k. The results in [6,7] give the commutative diagram given as in Figure 1
with exact rows and central extensions as columns, where G’ is the commutator
subgroup of G, M(G) is the multiplicator of G and T' is Whitehead’s quadratic
function [23].

In 1987, Brown et al. [5] computed the nonabelian tensor square of some
groups such as dihedral, quaternionic, symmetric and all groups of order at
most 30. The determination of G ® G for groups of orders p?q, pq?, pgr and
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0 0
! !
0(G™) — Jo(G) - M(G) —0
l |
[G*) - GG — GAG —1
K| A
G
l l
1 1

F1GURE 1. The commutative diagram

p?qr, where p, ¢, r are distinct primes and p < ¢ < r was mentioned by Jafari
et al. [13].

Hall [12], in his paper on the classification of prime-power groups, remarked:
The question of what conditions a group G must fulfill in order
that it may be the central quotient group of another group H, G =
H/Z(H), is an interesting one. But while it is easy to write down
a number of necessary conditions, it is not so easy to be sure that
they are sufficient.

Later, Hall and Senior [11] called a central factor group as a capable group.

A group G is capable if there exists a group H such that G = H/Z(H).

Ellis (see [10, Proposition 16]) proved that a group G is capable if and only if
its exterior center Z"(G) is trivial, where

ZMNG)={g€Glghxz =1, forall xz € G}.

Here, 1, denotes the identity in G A G.

In 1979, Beyl et al. (see [3, Corollary 2.3]) established a necessary and suf-
ficient condition for a group to be capable, that is, a group is capable if and
only if the epicenter Z*(G) of the group is trivial, where

Z*(G) = ﬂ{¢Z(E)|(E, ¢) is a central extension of G}.

For the case of a group G of order pg, it can easily be shown that GRG =Z,,
and G is capable if and only if G =< a,bla? = b2 = 1,ba = a®b >, where
pts—1andp|s?— 1. For a group of order p?,
sz 3 G = sz,

(Zp)* s G = Ly X Ly,
and G is capable if and only if G = Z,, x Z,,. For p-groups capability is closely
related to their classification. Baer [2] characterized the capable groups which

G®G%{
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are direct sums of cyclic groups; the capable extra-special p-groups were char-
acterized by Beyl et al. [3] (only the dihedral group of order 8 and the extra-
special groups of order p* and exponent p are capable); they also described
the metacyclic groups which are capable. Magidin [15,16], characterized the
2-generated capable p-groups of class two (for odd p, independently obtained
in part by Bacon and Kappe [1]).

In this paper we focus on the multiplicator, nonabelian tensor square and
capability of nonabelian groups of orders p?q, where p, g are distinct primes.

In the next theorem, the nonabelian tensor square for groups of order p%q
is stated:

Theorem 1.1. Let G be a nonabelian group of order p>q, where p,q are distinct
primes. Then exactly one of the following holds:

Lpg X Ly ;G =7y,

ZgxT ;G =7y X Ly,

L2, ;G 2T or G2 Ly,

Zy % (Zp)* ; G2 =2 7, X Ly,

GoG=

where T = (Z,)3, nonabelian group of order p* or Qa, quaternion group of
order 8.

In the following theorem, the capability of groups of order p?q can be deter-
mined with given conditions:

Theorem 1.2. Let G be a nonabelian group of order p>q for distinct primes p
and q. Then G is capable if and only if either

i zZ@G)=1, or

(i) p<q and G* =7, xZ,.

2. Preliminaries. This section includes some results on the commutator sub-
group, multiplicator, nonabelian tensor square and capability which play an
important rule for proving our main theorems.

Theorem 2.1. (see [20, Proposition 3.9]) Let G be a group of order p*q where
p and q are distinct primes. Then exactly one of the following holds:

1. Ifp > q, then G has a normal Sylow p-subgroup.
2. Ifq>p, then G has a normal Sylow q-subgroup.
3. Ifp=2,q=3, then G = Ay and G has a normal Sylow 2-subgroup.

By this theorem, the commutator subgroup of nonabelian groups of order
p*q is isomorphic to Zy, Zy2, Zy, X Ly, or Z,.

Schur and Zassenhaus (see [21, Theorem 9.1.2]) stated conditions for the
existence of any complement for a group G as follows:
Let N be normal subgroup of G. Assume that |[N| = n and [G : N] = m are
relatively prime. Then G contains subgroups of order m and any two of them
are conjugate in G.
This theorem asserts that the complement of G exists.

Let N be a normal subgroup of G. We say that IV is a normal Hall subgroup
of G if the order of N is coprime with its index in G. If N is a normal Hall
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subgroup of G, then G is a semidirect product of N and a subgroup T of G.
Any such subgroup T is referred as a complement of N in G. In this case, we
can obtain M (G) by the next theorem:

Theorem 2.2. (see [14, Corollary 2.2.6]) Let N be a normal Hall subgroup of
G and T be a complement of N in G. Then M(G) = M(T) x M(N)T.

By the use of Theorem 2.1, the multiplicator for groups of order p?q is
computed in the next lemma.

Lemma 2.3. Let G be a group of order p*q where p and q are distinct primes.
Then M(G) =1 or Z,.

Proof. Suppose P be a normal Sylow p-subgroup of G. Since (|P|,|G/P|) =1,
thus P is a normal Hall subgroup of G. Then G = P x T, where T is a subgroup
of G of order g and P = Zy> or Z), X Zy.

Therefore, by Theorem 2.2,

M(G) = M(T) x M(P)" = M(P)" =1 or Z,.

If @ is a normal Sylow g-subgroup of G, then @ is a normal Hall subgroup
of G. Therefore, G = Q x T, where T is a subgroup of G of order p?. Therefore,

- T o 1 3 T = sz,
M(©) = (D) x @7 = M) ={ (LT
If G = Ay, then M(G) has been computed in (see [5, Table 1]). O

The following five theorems will be used to compute the nonabelian tensor
square of groups of order p2q.

Theorem 2.4. (see [5, Proposition 8]) Let G be a group in which G' has a cyclic
complement C. Then G @ G = (G AG) x G* and |G @ G| = |G||M(G)|.

For a solvable group of derived length 2, the following theorem can be used:

Theorem 2.5. (see [17, Theorem 3.3]) Let G be a finite solvable group of derived
length 2. Then |G ® G| divides |G*® @z G*||G' AG'||G' @gygary I(G™)], where
I(G) is the kernel of Z|G*®] — Z.

Theorem 2.6. (see [18, Theorem C)) If G is a finite group such that the derived
subgroup G' is cyclic and (|G'|,|G/G’|) = 1, then GR G = G’ x (G*® @7 G?P).

Theorem 2.7. (see [4, Proposition 2.2]) Let G be a group such that G* is
finitely generated. If G®® has no element of order two or if G' has a comple-
ment in G then G ® G 2 T(G*) x G AG.

Theorem 2.8. (see [13, Theorem 2.2]) Let G be a group such that G =
H?zl Hf;l Lipeii where 1 < ejp <ep < -o- Zegy, forall1 < i < n,k; € N
and p; # 2. Then

GGl =]]p"GlM(G)
i=1

i which d; = Zki (ki — j)eij.

=1
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The last part of this section includes two theorems that will be used in
determining the capability of groups of order p?q.

Theorem 2.9. (see [9, Proposition 1]) Let G be a finitely generated capable
group. Then every central element z in G has order dividing exp ((G/<z>)2P).

Theorem 2.10. (see [19, Corollary 3.6]) Assume that G is a group with triv-
ial Schur multiplier and finite d(G/Z"(G)). Then Cg(x) = Ch(z) for every
element x of G. In particular, such a group has Z(G) = Z"(G).

3. The Proof of Main Theorems. In this section we prove our main theorems
as mentioned in Section 1, namely Theorems 1.1 and 1.2.

3.1. Proof of Theorem 1.1.

Proof. The proof of this theorem is based on the commutator subgroup of
groups of order p?q as mentioned in Section 2.

If G’ = Z,, then by Theorem 2.5, it is clear that |G @ G| divides p?q, where
G @ G™ = Zp,G' NG =1 and G’ @ggan) I(G™) = Zy,. On the other
hand, by Theorem 2.8 |G||M(G)| divides |G ® G|, that is, M(G) = 1. Figure 1
shows that G A G = G’ = Z,. Since G?P is finitely generated group that has
no element of order two, then by Theorem 2.7

G®G2ET(G™)x GAG=TLpy x Zyp.
If G’ 2 Z,, then (|G'],|G*"|) = 1 and G’ is cyclic. Then by Theorem 2.6
it is clear that
GRG2G x (G ®R7G™) 2Ly x (Zy ®Ly) = L2y

If G' = 7, X Zy, then (|G'],|G?]) = 1 and G* = Z,, is cyclic, so by Schur—
Zassenhaus Theorem, G’ has a cyclic complement. Therefore, by Theorems 2.2
and 2.4 we have the following computations:

M(G) = M(Zq) X M((Zp X Zp))zp = Zp,

(GAG)/M(G) 2 G 27, x Z, is abelian and |G A G| = p3, thus (G A G)' <
M(G), that is, (G A G)" =1 or Z,. Thus we have the following cases:
Case 1: If (GAG) =1, then GAG = (Z,)>.
Case 2: If (G AG) = Z,, then G A G =< a,bla? = W = 1,[a,b]" = [a,b] =
[a,b]” > or < a,bla?” =P =1,ab = aP™L > .
Finally, by the relation G ® G = G A G x G?P, the result follows.
If G' = Z,, then (|G'[,|G?"|) = 1. We have the following cases:
Case 1: If G* = Zy2, then by Theorem 2.6

GG Zq X (sz X7z Zp2) o Zqu-
Case 2: If G* = Z,, x Z,, then
G®G =2y x ((Zy X L) @ (Zp X L)) =2 Lg X (Zy)*.
The proof for the case that G’ 2 Zg x Zy can be found in (see [5, Table 1]).
0
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3.2. Proof of Theorem 1.2.

Proof. Let G be nonabelian group of order p?q, where p and ¢ are distinct
primes:

(i) If Z(G) =1, it is clear that G is capable.
If p > g and G is capable, then for the center of G we have the following
cases:
Case 1: |Z(G)| = p? or pq.
In these cases G/Z(G) is cyclic. Therefore, G is abelian which is a con-
tradiction.
Case 2: |Z(G)| = p.
In this case G/Z(G) = K, where K is nonabelian of order pg. By Theo-
rem 2.9,

z]|exp((G/ < z >)*"); for all z € Z(G), (3.1)

that is, p|g, while (p,q) = 1.
Case 3: |Z(G)] = q.
By Theorem 2.9, g|p or p?, which is a contradiction.
Thus the only case left is Z(G) = 1.
(i) Ifp < qand G is capable, then by a similar way we can show that |Z(G)|
cannot be p?,pq or gq.
If |Z(G)| = p and G*® = Z,2, then by Theorem 2.10, Z(G) = Z(G),
that is, Z"(G) # 1. Therefore, G is not capable.
Thus the only case left is G2 = Z,, x Z,.

Now, let G = Z, x Z,. Since G is a nonabelian group of order p?q and
p < ¢, then G isomorphic to exactly one group in the following list (see
[8, Section 59]):

1. Zg % Zy> =< a,bla? = b =1,bab~! = a' >, where i¥ = 1 (mod ¢) and
plg—1

2. <a,bcla? = =cP =1,bab~! = a*,ac = ca,bc = cb >, where ¥ = 1
(mod ¢) and p | ¢ — 1.

3. Zg A Ly =< a,bla? = W= 1,bab"! =a',i?" =1 (mod ¢) >, where
p*lqg—1.

For groups of types 1 and 3, G = Zy2> and for type 2, G* = Z, x Z,. Our

assumption is G = Zy, X Ly, then G is a group of type 2. In the classification

for groups of order p®q (see [22, Section 31]) , we choose H =< a, b, c,d|a? =

P =cP =d? =1,ab=ba,ac = ca,ad = da,bd = db,c " 'bc = ab,c " 'dc = d* >,

where ¢ =1 (mod p) and i* = 1 (mod q). Thus Z(H) = Z,,|H/Z(H)| = p*q

and (H/Z(H))* 2 Z, x Z,. These computations immediately show that G =

H/Z(H), that is, G is capable. O
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