
Japan J. Indust. Appl. Math. (2012) 29:317–330
DOI 10.1007/s13160-012-0071-3

ORIGINAL PAPER Area 3

Partitioning technique for transforming perfect binary
trees into single-row networks

Ser Lee Loh · Shaharuddin Salleh ·
Nor Haniza Sarmin

Received: 25 May 2011 / Revised: 22 February 2012 / Published online: 21 April 2012
© The JJIAM Publishing Committee and Springer 2012

Abstract Many problems in science and engineering can be simplified into the form
of a perfect binary tree. This paper discusses our study entitled Perfect Binary Tree
Sequence (PBTS) which transforms a perfect binary tree into the single-row network.
The transformation is necessary in applications such as in the assignment of telephone
channels to caller–receiver pairs roaming in cells in a cellular network on real-time
basis. In this application, each caller and receiver in a call forms a node, while their
pair connection forms the edge. A specific case of the graph in the form of a binary
tree is then transformed into its corresponding single-row network for assigning the
channels to the caller–receiver pairs. PBTS starts with the formation of the spine from
a perfect binary tree through the insertion mechanism, and this leads to the expansion
of the spine into one or more zones in the single-row network. This is followed by
the formation of terminals and intervals for optimal transformation into the nets of
the single-row network using our earlier method called ESSR. The numerical experi-
ment results support our hypothesis that PBTS transforms the tree into its single-row
network efficiently.
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318 S. L. Loh et al.

1 Introduction

Single-row routing problem originates from the layout design of printed circuit boards
(PCBs). The technique is one of the methods deployed for routing pins, vias and back-
planes with the main objective of minimizing the congestions in the PCBs. Efficient
routing ensures smooth communication between the components in the PCBs. Thus,
many researches had been carried out in minimizing the congestion on the circuit
board.

Single-row routing problem has been identified as an NP-complete problem [1].
Many heuristical solutions have been proposed to solve the problem as exact mathe-
matical techniques alone are not sufficient to produce optimum solutions. For example,
Ting et al. [1] and Kuh et al. [2] proposed the necessary and sufficient conditions for
the optimal solutions to the single-row routing problem. In [3], a partitioning strategy
was proposed to group the nets into zones which produces some reasonably good
solutions for some restricted models. This work is complemented in [4] through a
graph theoretical approach which relates the intervals of the single-row network with
the overlap and interval graphs.

In [5], a model called Enhanced Simulated Annealing Technique for Single-Row
Routing (ESSR) was proposed to optimize the network by minimizing both the con-
gestion and number of doglegs. ESSR is based on the simulated annealing technique
[6] which energy function is a function of the height of the segments of the nets in the
single-row network. The technique has been successfully applied to produce optimal
solutions to all net sizes.

Knowing that many engineering and science problems can be represented as prob-
lems in the graph theory, the relationship between a complete graph and its single-row
representation was first formulated in [7,8]. Both models discuss the transformation
of a graph into a single-row network where ESSR [5] is applied to produce optimal
results. The transformation finds its application, for example, in assigning telephone
channels to caller–receiver pairs roaming in cellular regions in a cellular network on
real-time basis. In this application, each caller and receiver from a call forms a node,
while their pair connection forms the edge. A specific case of the graph in the form of
binary tree is then transformed into its corresponding single-row network for assigning
the channels to the caller–receiver pairs.

A graph relationship with a single-row network is demonstrated through its trans-
formation in [7]. The transformation involves the mapping of each node in a connected
graph G as a zone in a single-row network S, which creates an interval for every link
in the node. The set of intervals formed from the mapping then produce non-crossing
nets in the single-row network S.

We propose a model called Perfect Binary Tree Sequence (PBTS) which performs
single-row transformation through two steps: first the formation of perfect binary tree
spine using the insertion mechanism, and second the expansion of the spine. PBTS is
followed by ESSR for producing an optimal single-row network.

The transformation of perfect binary trees into single-row networks has a number
of useful applications involving the matching problem between pairs of nodes. One
such application is the processor arrangement in a parallel computing network where
the processors are arranged in a single row as their axis. Another potential application
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Transforming perfect binary trees into single-row networks 319

Fig. 1 Terminologies in the single-row routing problem

is in the assignment of radio channels for the caller–receiver pairs on real-time basis
in a cellular telephone network.

This paper is organized into six sections. Section 1 is the introduction while Sect. 2
discusses the relationship between binary tree and single-row network. Section 3 is the
problem statement. Our model in single-row transformation of perfect binary tree is
presented in Sect. 4, while Sect. 5 presents the numerical experiment results of PBTS.
Section 6 is the summary and conclusion.

2 Binary tree and single-row network

The idea for the transformation from a binary tree to the single-row network stems
from our earlier work in [7]. The work involves the transformation of an arbitrary
connected graph G into the single-row network S where each edge in G forms a net in
S. An edge between two nodes in G is a matching between the two nodes which may
represent, for example, a real-time telephone line between two users from two remote
locations. Hence, the transformation from G to S has the potential of producing an
optimal path between the two users for fast and uninterrupted communication.

2.1 Single-row network

Single-row routing is a combinatorial optimization problem that has been proven to be
NP-complete [1,2]. Traditionally, single-row routing is one of the techniques employed
for designing the routes between the electronic components of a printed-circuit board.
Each path joining the terminals is called a net. In the single-row routing problem, we
are given a set of 2m evenly-spaced terminals (pins or vias), ti , for i = 1, 2, . . . , 2m,
arranged horizontally from left to right in a single horizontal row called the single-row
axis. The problem is to construct m nets from the list L = {Nk}, for k = 1, 2, . . . , m,
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320 S. L. Loh et al.

formed from horizontal intervals, (bk, ek), in the node axis, where bk and ek are the
beginning and end terminals of the intervals, respectively. Figure 1 shows a single-row
network. Single-row network is a planar graph with each horizontal interval is formed
from a pair of two terminals through non-intersecting vertical and horizontal lines.
The nets are to be drawn from left to right, and a reverse direction is not allowed.

Realization is the drawing of non-crossing paths each joining a pair of terminals
which aligned on a node axis. Figure 1 shows a realization from the ordering list
L = {N1, N3, N5, N4, N2}. Physically, each net in the single row represents a con-
ductor path for its terminals to communicate. The area above the single-row axis is
called the upper street, while the below is the lower street. The number of horizontal
tracks in the upper and lower streets is called the upper street congestion Qu and the
lower street congestion Ql , respectively. The overall street congestion Q of a reali-
zation is defined as the maximum of its upper and lower street congestions, that is,
Q = max{Qu, Ql} = 3 in the above figure. A crossing on the node axis, as shown
in Fig. 1 through a line between nodes 4 and 5 in the figure, is called a dogleg or
interstreet crossing. The realization also produces two doglegs in this example.

ESSR is based on the simulated annealing which minimizes the congestion and
number of doglegs in a single-row network by minimizing the following energy func-
tion [5] which expressed as the collective properties of congestion and number of
doglegs:

E =
m∑

i=1

ri∑

j=1

|hi, j | (1)

In the above equation, |hi, j | is the energy of segment j of net i , while ri is number
of segments in net Ni , i = 1, 2, . . . , m. The lower energy value presents the better
result with lower congestion and number of doglegs.

2.2 Binary tree

Binary tree is a type of tree where the degree of each vertex in the tree is at most three.
A rooted binary tree is a tree which node has at most two children. The root of a tree is
the node with no parent while the leaf node is the node which has no children. There
is exactly one root node in a rooted tree. The depth of a node is the length of the path
from the root node to the node. Hence, the root node is at depth zero. The set of nodes
at a given depth is called a level. It follows that a perfect binary tree is a rooted binary
tree whose leaves are located in the same depth or level. The height, h, of the tree is
the maximum level of any of its nodes. Thus, the number of existing nodes in a perfect
binary tree at level k is 2k . A perfect binary tree with height h has 2h+1 − 1 nodes
and 2h leaves. It can be implemented as an array where a node at index i has children
at indexes 2i and 2i + 1 and a parent at index i

2 . In this paper, τ is used to represent
perfect binary tree with height h.

3 Problem statement

The transformation problem can be stated as follows:
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1
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8 9 10 11 12 13 14 15

z8 z13z6z12z3z1z2z11z5z10z9z4 z15z7z14

zc1 zc12zc11zc10zc9zc8zc7zc6zc5zc4zc3zc2 zc15zc14zc13

Fig. 2 Perfect binary tree τ (up) and its mapping into the single-row network S (down)

Given a connected graph in the form of a perfect binary tree τ , how can it be opti-
mally transformed into a single-row network S so as to minimize the congestion in the
network?

Figure 2 shows a perfect binary tree τ with total number of nodes, n = 15, and its
single-row network S. A zone in S is an image of the object called node in τ while a
terminal in S is a pin in the zone which works in a pair joining a net, where the net is
an image of an edge in τ . The transformation from τ to S results in every node vi in τ

forming a zone zi in S where the number of terminals in the zone equals to the degree
di of the node vi for i = 1, 2, . . . , 15. For example, v2 has degree of three and hence
z2 has three terminals. In S, the terminals are aligned evenly in a node axis where the
sequence of zones in S matches node labeling in τ . The edges in τ are preserved as
the nets or intervals in S. For example, v2 is adjacent to v4 and hence there is a net
joining the terminals each one from z2 and z4. All nets are drawn from left to right in
one way to form non-crossing paths.

Optimal transformation denotes the best transformation which gives the single-row
network with the lowest congestion and number of doglegs. In order to achieve opti-
mal transformation, arrangement of zone zi for i = 1, 2, . . . , n is to be determined.
The zones are arranged in such a way the set of shorter intervals is formed. A labeling
scheme is used to assign labels zc j , j = 1, 2, . . . , n which describes the position of
zones in S. The label consists of an array, c j , records the zone at the position j in S.
For example, from Fig. 2, the first zone zc1 is occupied by z8 while the second zone
zc2 is occupied by z4.

4 PBTS: the transformation model

In PBTS, a perfect binary tree is divided (starting from the leaves) into a few partitions
where each partition has two levels of nodes. The upper level nodes and lower level
nodes refer to the upper and lower levels of nodes respectively in the partition. A spine
in our model refers to the partial zones in the single-row network. The partial zones
correspond to the upper level nodes in each of the partition in τ . The spine is then
expanded into a list of zones (except the zone which corresponds to the root node in
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Fig. 3 The schematic flow of PBTS

perfect binary tree with even value of height) by adding all the corresponding lower
level nodes in each partition.

Figure 3 shows the schematic flow of PBTS. PBTS comprises two main steps,
namely, the formation of a spine from the nodes of the graph, and the expansion of
the spine into single-row terminals. The transformation of a perfect binary tree τ of
height h into a single-row network involves the formation of zones, terminals and
intervals. In the formation of zones, we propose a new technique called Formation of
Spine through Insertion Mechanism, followed by Expansion of Spine into a sequence
of zones.

4.1 Formation of zones and terminals

In forming the zones, n nodes in τ are mapped into n zones in S where n = 2h+1 − 1.
Each node vi in τ has degree di for i = 1, 2, . . . , n. Also, each zone zi in S corre-
sponds to node vi in τ , and this generates the number of terminals equal to the number
of degree, di in τ . For a perfect binary tree, the root node has the degree of two and
all the leaves have the degree of one while the rest of internal nodes have the degree
of three.

Arrangement of zones is crucial in the issue of optimizing the single-row transfor-
mation. PBTS involves the formation of a perfect binary tree spine with the insertion
mechanism and the expansion of spine, where these algorithms will be illustrated
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Fig. 4 A perfect binary tree τ with h = 5

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

Fig. 5 Spine at k = 0

with examples. The model provides an efficient technique to compute the optimal
arrangement of zones.

4.1.1 Formation of the perfect binary tree spine

In forming the spine, the perfect binary tree is divided into M + 1 partitions where M
is the ceiling of h−1

2 , or M = � h−1
2 �. Each partition, Parti tionk for k = 0, 1, . . . , M ,

is made up of two levels of nodes starting from the leaves. The first partition is
Parti tion0 which includes nodes from the bottommost two levels, while the last
partition is Parti tionM which has the top two levels of nodes (for trees with odds h).

Figure 4 shows an example of a perfect binary tree with h = 5. The tree has a total
of 64 nodes arranged into 6 levels with node 1 as the root, and nodes 32–63 as the
leaves. There are three partitions in the tree where each partition has two levels of
nodes, named upper level and lower level of nodes. All upper level of nodes in each
partition are known as spine Pi .

4.1.2 Insertion mechanism

The perfect binary tree spine is formed using a technique called Insertion Mechanism.
We refer to τ in Fig. 4 to illustrate this approach. Initially, the spine formation starts
with the bottommost level nodes where k = 0. Each node in level 4 forms the spine,
Pi for i = 1, 2, . . . , 2h−kas shown in Fig. 5.

The insertion mechanism starts with k = 1. The number of added zones which orig-
inate from the upper level nodes in partition k is determined by A_zonek = 2h−(2k+1)

for k = 1, 2, . . . , M . The gap between the added zones is computed as P_Gapk =
T tlCurrent P

A_zonek
for k = 1, 2, . . . , M where T tlCurrent P refers to the total number of

zones in the spine at (k −1)th iteration. These zones are inserted evenly with P_Gapk

unit of gap to minimize the distance between the parents with their corresponding
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16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P1 P2 P4 P5 P6 P7 P9 P10 P11 P12 P14 P15 P16 P17 P19 P20

4 5 6 7
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Fig. 6 Spine at k = 1
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Fig. 7 Spine at k = 2
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Fig. 8 Sequence of zones for a PBT with h = 5

descendants on the nodes axis in S. For example, when k = 1, A_zone1 = 22 = 4.
A total of four zones are inserted evenly into the spine with P_Gap1unit of distance
between them, and this is shown in Fig. 6.

Since node 4 is the ancestor node of nodes 16, 17, 18 and 19, this node is inserted
in the middle of its descendant nodes. This is done in order to minimize the width of
intervals between node 4 and its descendant nodes in S. This strategy also contributes
in minimizing the congestion and the doglegs in single-row routing problem. The next
iteration follows where k = 2, A_zone2 = 20 = 1. The zone is inserted into the spine
to complete the formation of spine, and this is shown in Fig. 7. The formation of PBT
spine is said to be completed after M iterations.

4.1.3 Expansion of spine

All the zones in the spine are expanded to form a sequence of zones. Each node at
index i has children at indexes 2i and 2i +1. From the previous example, P1 = 16 has
two children which are shown as nodes 32 and 33 in Fig. 8. The expansion of spine
P1 yields zc1 = z32, zc2 = z16, and zc3 = z33. This process is repeated in every zone
until the construction of zones is completed. The complete sequence of zones which
is expanded from the spine for the previous example is shown in the Fig. 8.

For a perfect binary tree with an odd value height, the formation of zones is com-
pleted after the expansion of the spine. However, for a tree with an even height value,
the formation of zones is completed by inserting the root node in the middle of the
sequence of zones after the expansion of the spine.
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Transforming perfect binary trees into single-row networks 325

Zero-energy net contributes towards a low congestion in the network as it can be
drawn directly on the node axis. Thus, the spine is expanded in such a way to maximize
the number of zero-energy nets. The formation of zones zc j , j = 1, 2, . . . n for PBT
with height of h is given in Algorithm Formation_of_Zones.

4.1.4 Formation of terminals

Algorithm Formation_of_Terminals outlines the formation of zones and ter-
minals in our model. Every zi in S corresponds to vi in τ for i = 1, 2, . . . , n. Hence,
every zi has a number of terminals equal to the degree di of vi . As a result, the total
number of terminals formed in S is

∑n
i=1 di . All terminals are aligned on the node axis

and numbered successively following the sequence of zones, c j for j = 1, 2, . . . , n.
In fact, c j reflects the nodes label in τ .
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326 S. L. Loh et al.

4.2 Formation of intervals

After the terminals are formed, the nets which connect their own pairs of terminals
are constructed under the formation of intervals. All zones have their own unique
corresponding nodes in τ . Zone zi is said to be connected with z j in S if and only if
vi is connected with v j in τ .

There are two parts in the construction of nets. In the first part, a net is formed on a
node axis between two consecutive terminals from two consecutive connected zones.
This part provides the nets with zero energy, which contributes towards minimum
congestion in the network.

For the second part, the list g = {g1, . . . , gn} is defined as the zone ordering for
interval formation. The middle zone zc j in S is set as the first element g1 = j in the g
where the nets start to form. The two zones which are next to the middle zone on the
left- and the right-hand side are set to be the second and third elements arbitrarily in
the g list. It follows that the two zones which are second next from the middle zone
on the left- and the right-hand side are set as the fourth and fifth elements, arbitrarily.
The process is repeated until the whole ordering list is completed. Figure 9 shows an
example of a PBT with h = 2 and its g list produced using this technique.

In zone zcg1
, a net is formed between the first available terminal in it and the last

available terminal in the zone on the left-hand side which is nearest and connected
with zcg1

. Each zone on the left-hand side of zcg1
is checked individually from zcg1

in
a leftward direction. The process is repeated until each of the zones on the left-hand

1

2 3

4 5 6 7

g6 = 1 g2 = 3 g5 = 6g4 = 2 g3 = 5

zc1 zc2 zc3 zc4 zc5 zc6 zc7

g7 = 7g1 = 4

z4 z2 z5 z1 z6 z3 z7

Fig. 9 PBT with h = 2 and its g list in S (with n = 7)
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side which are connected to zcg1
produces a net formed from zcg1

. It follows then that
a net will be formed between the last available terminal in zcg1

and the first available
terminal in the zone on the right-hand side which is nearest and connected to zcg1

.
Then, each zone on the right-hand side of zcg1

will be checked individually from zcg1
in

a rightward direction. The process is repeated until each of the zones on the right-hand
side which are connected to zcg1

produces a net formed from zcg1
.

When the net construction is completed for zcg1
, the iteration is repeated for

zcg2
individually for n iterations until the last zone, zcgn

to produce a complete
initial single-row network. The net construction procedure is outlined in Algorithm
Formation_of_Intervals.

Once the construction process is completed, the nets are ready for sorting. The next
step is renumbering the nets from their beginning terminals in ascending order. This
step is followed by the assignment of each net to a unique level which represents the
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Table 1 Numerical experiment results for some perfect binary trees

Height, # nodes, PBTS DSA

h n E Q D E Q D
2 7 2 1 0 2 1 0
3 15 4 1 0 4 1 0
4 31 12 2 0 14 2 0
5 63 24 2 0 46 4 5
6 127 55 3 1 166 9 25
7 255 114 4 1 4, 609 26 767

ordering of nets. The final step is applying ESSR [5] to obtain the optimal sequence
for the ordering of nets to produce a single-row network with the least congestion.

5 Numerical experiment results

We applied PBTS on several models with height values of between two and seven of
the perfect binary tree. We also applied our earlier model, namely Double Simulated
Annealing (DSA), in the same problems for comparison purpose. The sequence of
zones in DSA is obtained by permutated the zones using simulated annealing with-
out considering the properties of graphs. The results in terms of energy values (E),
congestion (Q) and number of doglegs (D) are summarized in Table 1.

It is clear from the results that the formation of the perfect binary tree spine in
PBTS minimizes the width of the intervals. It follows that the expansion of the spine
maximizes the formation of nets with zero energy value which contributes to the low
energy value in the single-row network. Figure 10a and b shows the nets ordering of
τ and its final realization for both PBTS and DSA.

Regression testing is carried out for the result formulation of PBTS based on numer-
ical experiment as shown in Table 1. The relation between the energy (E) and the order
of perfect binary tree (n) from Table 1 is shown as follows:

E = 0.4553 − 2.6243 (2)

The results from the simulation work are derived from the unique characteristics
of a perfect binary tree, that is, all the leaves in the tree have the same depth. In the
tree, the number of existing nodes at level d is 2d . The tree with height h has 2h+1 − 1
nodes and 2h leaves. It can be efficiently presented as an array where a node at index
i has children at indexes 2i and 2i + 1 and a parent at index i

2 . PBTS has been devel-
oped based on these unique characteristics of the tree which efficiently optimize the
single-row transformation of the perfect binary tree.

6 Summary and conclusion

One difficulty in transforming a graph into a single-row network is dealing with the
way the nodes from the graph are mapped as terminals in the network. The order or
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Fig. 10 a Nets ordering of τ (up) with minimum energy, E = 12 and its final realization (down) using
PBTS. b Nets ordering of τ (up) with minimum energy, E = 14 and its final realization (down) using DSA

arrangement of the terminals is important as it will determine the optimality of the sin-
gle-row network. Improper ordering of the terminals will definitely contribute towards
high congestion in the network. Therefore, it is necessary to start the optimality strat-
egy by dealing with the properties of the graph before transforming the nodes. We
address this difficulty in this paper using the perfect binary tree as a case study.

Our work proposes a new technique for transforming a perfect binary tree into a
single-row network. We propose a new model called the PBTS which includes two
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steps, namely, the formation of a spine using Algorithms Formation_of_Zones
and Formation_of_Terminals, and its expansion into the terminals of the
single-row network using Algorithm Formation_of_Intervals. The terminals
produced from PBTS are arranged optimally based on the characteristics of the binary
tree, and this leads to the formation of intervals or nets in the single-row network.
We then apply our earlier simulation model to the intervals called ESSR to produce
an optimal single-row network by minimizing the energy.

PBTS has been tested using six different models of a perfect binary tree with heights
ranging from two to seven. The simulations produced optimal results in each case for
minimum congestion in the final realizations.

The perfect binary tree is our first step in generalizing the technique to an arbitrary
graph. It will not be easy to deal with a graph in general as different graphs have
inherent properties that make them resistant to mapping. Therefore, we suggest a case
by case analysis to help in achieving this objective.
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