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Abstract. In this paper we introduce splicing systems with probabili-
ties, i.e., probabilistic splicing systems, and establish basic properties of
language families generated by this type of splicing systems. We show
that a simple extension of splicing systems with probabilities
may increase the computational power of splicing systems with finite
components.

1 Introduction

DNA molecules are double stranded helicoidal structures composed of four nu-
cleotides A (adenine), C (cytosine), G (guanine), and T (thymine), paired A-
T, C-G according to the so-called Watson-Crick complementary. Watson-Crick
complementary and massive parallelism, the other fundamental and distinc-
tive feature of DNA molecules, are taken as the main characteristics of DNA
computing.

Adleman’s [1] famous biological experiment, which could solve Hamiltonian
Path Problem using these two features, indeed gave a high hope for the future
of DNA computing. Since there have been obtained a number exciting results
showing the power of DNA computing, for instance, Lipton [2] showed that how
to use DNA to solve the problem to find satisfying assignments for arbitrary
contact networks. Boneh et al. [3] showed that DNA based computers can be
used to solve the satisfiability problem for Boolean circuits.
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One of the early theoretical proposals for DNA based computation was made
by Head [4] who used the splicing operation – a formal model of the cutting and
recombination of DNA molecules under the influence of restriction enzymes. This
process works as follows: two DNA molecules are cut at specific subsequences
and the first part of one molecule is connected to the second part of the other
molecule, and vice verse. This process can be formalized as an operation on
strings, described by a so-called splicing rule of the form (u1, u2; v1, v2) where
u1u2 and v1v2 are the subsequences in question and the cuts are located between
u1 and u2 as well as v1 and v2. These rules are the basis of a computational model
(language generating device) called a splicing system or also H system. A system
starts from a given set of strings (axioms) and produce a language by iterated
splicing according to a given set of splicing rules.

Since splicing systems with finite sets of axioms and rules generate only regu-
lar languages (see [5]), several restrictions in the use of rules have been considered
(see [6]), which increase the computational power up to the recursively enumer-
able languages. This is important from the point of view of DNA computing:
splicing systems with restrictions can be considered as theoretical models of
universal programmable DNA based computers.

Different problems appearing computer science and related areas motivates
to consider suitable models for the solution of these problems. For instance, in
order to develop accurate tools for natural and programming language process-
ing, the probabilistic models have been widely used. In fact, adding probabilities
to grammars allows eliminating ambiguity and leads more efficient parsing and
tagging algorithms for the language processing. The study of probabilistic gram-
mars (defined by assigning a probability distribution to the productions) and
probabilistic automata (defined by associating probabilities with the transitions)
started in the 1960s (for instance, see [7–11]). The recent results on probabilistic
grammars and automata can be found, for instance, in [12–14].

In general, the probability of a generated (accepted) string is computed by the
multiplication of the probabilities of those rules (transitions) which participated
in the derivation (acceptance) of the string (though, in [11], the computation
of probabilities is defined slightly different). Different threshold probabilistic
languages can also be defined by using different thresholds (numbers, sets, etc.)
and their modes (order relations, a membership to a threshold set, etc.)

The interesting and natural fact that the probabilistic concepts in formal lan-
guage and automata theories can also be adapted in DNA computing theory, i.e.,
we can define probabilistic splicing and sticker systems as well as probabilistic
Watson-Crick automata.

In this paper we introduce probabilistic splicing systems. In such systems,
probabilities are associated with the axioms (not with the rules), and the prob-
ability of the generated string from two strings is calculated by multiplication
of their probabilities. In order to overcome the ambiguity (the same string may
have different probabilities), we can use another operation such as addition.
We also define different threshold probabilistic languages using as a threshold
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segments, sets, real numbers and as a mode the order and equality relations, a
membership to a threshold set.

This paper is organized as follows. Section 2 contains some necessary defi-
nitions and results from the theories of formal languages and splicing systems.
Section 3 introduces the concept of a probabilistic splicing systems and thresh-
old probabilistic languages, explains the specific features of probabilistic splicing
systems in two examples and establishes some basic results concerning to the
generative power of probabilistic splicing systems. It shows that probabilistic
splicing systems with finite components generate not only regular languages but
also context-free and context-sensitive languages. Section 4 discusses the ob-
tained results, cites some open problems and indicates possible topics for future
research in this direction.

2 Preliminaries

In this section we recall some prerequisites, by giving basic notions and notations
of the theories formal languages, and splicing systems, which are used in sequel.
The reader is referred to [6, 15, 16] for detailed information.

Throughout the paper we use the following general notations. The symbol ∈
denotes the membership of an element to a set while the negation of set mem-
bership is denoted by �∈. The inclusion is denoted by ⊆ and the strict (proper)
inclusion is denoted by ⊂. ∅ denotes the empty set. The sets of integers, positive
rational numbers and real numbers are denoted by Z, Q+ and R, respectively.
The cardinality of a set X is denoted by |X |.

The families of recursively enumerable, context-sensitive, context-free, linear,
regular and finite languages are denoted by RE, CS, CF, LIN, REG, FIN,
respectively. For these language families, the next strict inclusions, named Chom-
sky hierarchy, hold

FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.

Further, we recall some basic notations and notations of (iterative) splicing sys-
tems.

Let V be an alphabet, and #, $ �∈ V two special symbols. A splicing rule over
V is a string of the form

r = u1#u2$u3#u4, where ui ∈ V ∗, 1 ≤ i ≤ 4.

For such a rule r and strings x, y, z ∈ V ∗, we write

(x, y) �r z iff x = x1u1u2x2, y = y1u3u4y2,

and z = x1u1u4y2,

for some x1, x2, y1, y2 ∈ V ∗.
We say that z is obtained by splicing x, y, as indicated by the rule r; u1u2

and u3u4 are called the sites of the splicing. We call x the first term and y the
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second term of the splicing operation. When understood from the context, we
omit the specification of r and we write � instead of �r.

An H scheme is a pair σ = (V,R), where V is an alphabet and R ⊆
V ∗#V ∗$V ∗#V ∗ is a set of splicing rules. For a given H scheme σ = (V,R)
and a language L ⊆ V ∗, we define

σ(L) ={z ∈ V ∗ | (x, y) �r z,

for some x, y ∈ L, r ∈ R},
σ0(L) =L,

σi+1(L) =σi(L) ∪ σ(σi(L)), i ≥ 0,

σ∗(L) =
⋃

i≥0

σi(L).

An extended H system is a construct γ = (V, T,A,R), where V is an alpha-

bet, T ⊆ V is the terminal alphabet, A ⊆ V ∗ is the set of axioms, and
R ⊆ V ∗#V ∗$V ∗#V ∗ is the set of splicing rules. When T = V , the system
is said to be non-extended. The language generated by γ is defined by

L(γ) = σ∗(A) ∩ T ∗.

EH(F1, F2) denotes the family of languages generated by extended H systems
γ = (V, T,A,R) with A ∈ F1 and R ∈ F2 where

F1, F2 ∈ {FIN,REG,CF,LIN,CS,RE}.
Theorem 1 ([6]). The relations in the following table hold, where at the in-
tersection of the row marked with F1 with the column marked with F2 there
appear either the family EH(F1, F2) or two families F3, F4 such that F3 ⊂
EH(F1, F2) ⊆ F4.

FIN REG LIN CF CS RE
FIN REG RE RE RE RE RE
REG REG RE RE RE RE RE
LIN LIN, CF RE RE RE RE RE
CF CF RE RE RE RE RE
CS RE RE RE RE RE RE
RE RE RE RE RE RE RE

3 Definitions, Examples and Results

In this section we define probabilistic splicing systems which is specified with
probabilities assigned to each string generated by the splicing system and the
multiplication operation over the probabilities. Moreover, we define threshold
probabilistic splicing languages and show that probabilistic splicing systems with
finite components can also generate context-free and context-sensitive languages.
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Definition 2. A probabilistic H (splicing) system is a 5-tuple γ = (V, T,A,R, p)
where V, T,R are defined as for a usual extended H system, p : V ∗ → [0, 1] is a
probability function, and A is a finite subset of V + × [0, 1] such that

∑

(x,p(x))∈A

p(x) = 1.

We define a probabilistic splicing operation as follows:

Definition 3. For strings (x, p(x)), (y, p(y)), (z, p(z)) ∈ V ∗ × [0, 1] and r ∈ R,

[(x, p(x)), (y, p(y))] �r (z, p(z))

if and only if (x, y) �r z and p(z) = p(x)p(y).

Thus, the probability of the string z ∈ V ∗ obtained by splicing operation on two
strings x, y ∈ V ∗ is computed by multiplying their probabilities.

Definition 4. Then the language generated by the splicing system γ is defined
as

Lp(γ) = {z ∈ T ∗ | (z, p(z)) ∈ σ∗(A)}.
Remark 5. We should mention that splicing operations may result in the same
string with different probabilities. Since, in this paper, we focus on strings
whose probabilities satisfy some threshold requirements, i.e., the probabilities
are merely used for the selection of some strings, this “ambiguity” does not effect
on the selection. When we investigate the properties connected with the prob-
abilities of the strings, we can define another operation together with the mul-
tiplication, for instance, the addition over the probabilities of the same strings,
which removes the ambiguity problem.

Let Lp(γ) be the language generated by a probabilistic splicing system γ =
(V, T,A,R, p). We consider as thresholds (cut-points) subsegments and discrete
subsets of [0, 1] as well as real numbers in [0, 1]. We define the following two
types of threshold languages with respect to thresholds Ω ⊆ [0, 1] and ω ∈ [0, 1]:

Lp(γ, ∗ω) ={z ∈ T ∗ | (z, p(z)) ∈ σ∗(A) ∧ p(z) ∗ ω},
Lp(γ, �Ω) ={z ∈ T ∗ | (z, p(z)) ∈ σ∗(A) ∧ p(z) � Ω},

where ∗ ∈ {=,≥, >,≤, <} and � ∈ {∈, /∈} are called threshold modes.

We denote the family of languages generated by probabilistic splicing systems
of type (F1, F2) by pEH(F1, F2), where

F1, F2 ∈ {FIN,REG,CF,LIN,CS,RE}.

Remark 6. In this paper we focus on probabilistic splicing systems with the finite
set of axioms, since we consider a finite initial distribution of probabilities over
the set of axioms. Moreover, it is natural in practical point of view: only splicing
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systems with finite components can be chosen as a theoretical models for DNA
based computation devices. Thus, we use the simplified notation pEH(F ) of
the language family generated by probabilistic splicing systems with finite set
of axioms instead of pEH(F1, F2), where F ∈ {FIN,REG,CF,LIN,CS,RE}
shows the family of languages for splicing rules.

From the definition the next lemma follows immediately.

Lemma 7
EH(FIN, F ) ⊆ pEH(F ),

for all families F ∈ {FIN,REG,CF,LIN,CS,RE}.
Proof. Let γ = (V, T,A,R) be an extended splicing system generating the lan-
guage L(γ) ∈ EH(FIN, F ) where F ∈ {FIN,REG,CF,LIN,CS,RE}.

Let A = {x1, x2, . . . , xn}, n ≥ 1. We define a probabilistic splicing system
γ′ = (V, T,A′, R, p) where the set of axioms is defined by

A′ = {(xi, p(xi)) | xi ∈ A, 1 ≤ i ≤ n}

where p(xi) = 1/n for all 1 ≤ i ≤ n, then
∑n

i=1 p(xi) = 1. We define the
threshold language generated by γ′ as Lp(γ

′, > 0), then it is not difficult to see
that L(γ) = Lp(γ

′, > 0). ��

Example 8. Let us consider the system

γ1 = ({a, b, c, d}, {a, b, c}, {(cad, 2/7), (dbc, 5/7)}, p1, R1)

where
R1 = {r1 = a#d$c#ad, r2 = db#c$d#b, r3 = a#d$d#b}. (1)

It is not difficult to see that the first rule in (1) can only be applied to the string
cad, and the second rule in (1) to the string dbc. For instance,

[(cad, 2/7), (cad, 2/7)] �r1 (caad, (2/7)2),

and
[(dbc, 5/7), (dbc, 5/7)] �r2 (dbbc, (5/7)2).

In general, for any k ≥ 1 and m ≥ 1,

[(cakd, (2/7)k), (cad, 2/7)] �r1 (cak+1d, (2/7)k+1),

and
[(dbmc, (5/7)m), (dbc, 5/7)] �r2 (dbm+1c, (5/7)m+1).

From the strings cakd, k ≥ 1, and dbmc, m ≥ 1, by the rule r3,

[(cakd, (2/7)k), (dbmc, (5/7)m)] �r3 (cakbmc, (2/7)k(5/7)m).
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Thus,
Lp(γ1) = {(cakbmc, (2/7)k(5/7)m) | k ≥ 1,m ≥ 1}.

We consider the threshold languages generated by this probabilistic splicing
systems with different thresholds and modes:

(1) Lp(γ1,= 0) = ∅;
(2) Lp(γ1, > 0) = L(γ′

1);

(3) Lp(γ1, > νi) = {cakbmc | 1 ≤ k,m ≤ i};
(4) Lp(γ1,∈ {νn | n ≥ 1}) = {canbnc | n ≥ 1};
(5) Lp(γ1, /∈ {νn | n ≥ 1}) = {cakbmc | k > m ≥ 1} ∪ {cakbmc | m > k ≥ 1}

where ν = 10/49, i ≥ 1 is a fixed integer, and γ′
1 is the “crisp” variant of the

splicing system γ1, i.e., γ1 without probabilities. We can see that the second
language is regular, the third language is finite, the fourth and fifth languages
are not regular but context-free. ��
Example 9. Consider the probabilistic splicing system

γ2 = ({a, b, c, w, x, y, z}, {a, b, c, w, z}, A2, R2, p2)

where A2 = {(wax, 3/19), (xby, 5/19), (ycz, 11/19)} and

R2 = {r1 = wa#x$w#a, r2 = xb#y$x#b, r3 = yc#z$y#c,

r4 = a#x$x#b, r5 = b#y$y#c}.
Using the first axiom and rule r1, we obtain strings

(wakx, (3/19)k), k ≥ 1,

the second axiom and rule r2,

(xbmy, (5/19)m),m ≥ 1,

the third axiom and rule r3,

(ycnz, (11/19)n), n ≥ 1.

The nonterminals x and y from these strings are eliminated by rules r4 and r5,
i.e.,

[(wakx, (3/19)k),(xbmy, (5/19)m] �r4

(wakbmy, (3/19)k(5/19)m),

and

[(wakbmy,(3/19)k(5/19)m), (ycnz, (11/19)n] �r5

(wakbmcnz, (3/19)k(5/19)m(11/19)n).
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Then the language generated by the probabilistic splicing system γ2

Lp(γ2) = {(wakbmcnz, τk1 τ
m
2 τn3 ) | k,m, n ≥ 1}

where τ1 = 3/19, τ2 = 5/19 and τ3 = 11/19.
Further, we consider the following threshold languages:

Lp(γ2, > 0) = L(γ′
2) ∈ REG

where γ′
2 is the “crisp” variant of the splicing system γ2.

Lp(γ2, > τ i) = {wakbmcnz | 1 ≤ k,m, n ≤ i} ∈ FIN

where τ = 165/6859, and i ≥ 1 is a fixed positive integer.

Now, let Ω = {(165/6859)n | n ≥ 1}, then

Lp(γ2,∈ Ω) = {wanbncnz | n ≥ 1} ∈ CS−CF

and

Lp(γ2, /∈ Ω) = {wakbmcnz | k,m, n ≥ 1∧ k �= m,m �= n, k �= n} ∈ CS−CF. ��

The examples above illustrate that the use of thresholds with probabilistic splic-
ing systems increase generative power of splicing systems with finite components.
We should also mention two simple but interesting facts of probabilistic splic-
ing systems. First as Proposition 3 and second as Proposition 4, stated in the
following.

Proposition 10. For any probabilistic splicing system γ, the threshold language
Lp(γ,= 0) is the empty set, i.e., Lp(γ,= 0) = ∅.

Proposition 11. If for each splicing rule r in a probabilistic splicing system γ,
p(r) < 1, then every threshold language Lp(γ,> η) with η > 0 is finite.

From Theorem 1, Lemma 7 and Examples 8,9, we obtain the following two

theorems.

Theorem 12

REG ⊂ pEH(FIN) ⊆ pEH(F ) = RE

where F ∈ {REG,CF,LIN,CS,RE}.

Theorem 13

pEN(FIN)−CF �= ∅.
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4 Conclusions

In this paper we introduced probabilistic splicing systems by associating prob-
abilities with strings and also established some basic but important facts. We
showed that an extension of splicing systems with probabilities increases the
generative power of splicing systems with finite components, in particular cases,
probabilistic splicing systems can generate non-context-free languages.

The problem of strictness of the second inclusion in Theorem 12 and the
incomparability of the family of context-free languages with the family of lan-
guages generated by probabilistic splicing systems with finite components (the
inverse inequality of that in Theorem 13) remain open.

We should mention the possible and interesting topics for the study in prob-
abilistic DNA computing in general and in probabilistic splicing systems in
particular:

– Since extended splicing systems with finite set of splicing rules can generate
languages in different language families in Chomsky hierarchy (see Theorem
1), it would be interesting to consider splicing systems with an infinite prob-
ability distribution over the set of axioms, and investigate the properties of
the generated languages.

– It is also interesting to define probabilistic sticker systems and probabilistic
Watson-Crick automata with different thresholds and modes.

– Another interesting topic in this direction is to consider splicing systems ex-
tended with fuzzy characteristic functions and weights, which can also be
defined in the same way as probabilistic splicing systems.
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