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Abstract: A group G is metacyclic if it contains a cyclic normal subgroup K such that G/K is also cyclic.
Metacyclic p-groups classified by different authors. King classified metacyclic p-groups. Beuerle (2005)
classified all finite metacyclic p-groups. A group is called capable if it is a central factor group. The purpose
of this study is to compute the epicenter of finite nonabelian metacyclic p-groups of nilpotency class two, for
some small order groups, using Groups, Algorithms and Programming (GAP) software. We also determine
which of these groups are capable.
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INTRODUCTION

A finite p-group G is called metacyclic if it has a
cyclic normal subgroup K such that G/K is also cyclic.
Finite metacyclic groups can be presented with two
generators and three defining relations. Much attention
has been given to some specific types of metacyclic
groups. Zassenhaus discussed metacyclic groups with
cyclic commutator quotient, as did Hall. Metacyclic p-
groups of odd order have been classified by (Beyl et al.,
1979). Significant progress was made when Sim (1994)
proved that every finite metacyclic group can be
decomposed naturally as a semidirect product of two Hall
subgroups (Hempel, 2000).

For a group G the epicenter of G is defined as
follows:

Definition 1: Beyl et al. (1979) the epicenter, Z*(G) of a
group G is defined as: 

1{NZ(E); (E, N) is a central extension of G}
It can be easily seen that the epicenter is a

characteristic subgroup of G contained in its center. 
The notion of the capability of a group was first

studied by Baer (1938) who initiated a systemic
investigation of the question which conditions a group G
must fulfill in order to be the group of inner
automorphisms of some group H, i.e.,

( )G H
Z H≅

The term was coined by Hall and Senior (1964) who
defined a capable group as equal to its central factor
group. The capability for some groups has been studied by
many authors including Baer (1938) who characterized
finitely generated abelian groups which are capable in the
following theorem:

Theorem 1: Baer (1938) Let A be a finitely generated
abelian group written as  such thatA Z Z Zn n nk

= ⊕ ⊕ ⊕
1 2

K

each integer ni+1 is divisible by ni and Z0 = Z, the infinite
cyclic group. Then A is capable if and only if k$2 and nk!1

= nk.
Beyl et al. (1979) established a necessary and

sufficient condition for a group to be a central quotient in
terms of the epicenter as follows:

Theorem 2: Beyl et al. (1979) A group G is capable if
and only if Z*(G) = 1.

With the help of this characterization, Beyl et al.
(1979) were able to determine the extra special p-groups
which are capable and describe the capable finite
metacyclic groups.

Beuerle (2005) gave a presentation of metacyclic p-
groups in the form:
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G a b a b a bab ap p k rm m
= = = =−, ; , ,1 1

 where, ( )m n r k p p k rm m, , , , ,≥ > ≤ −0 0 1

and p rm pn
| − 1

Metacyclic p-groups are divided by Beuerle (2005)
into two categories as follows:

( )G a b a b a bab ap
p p p rα β ε δ
α β α ε

, , , , , ; , ,± = = = =
− −1 1

where, r = p"!* +1 or r = p"!* !1

We say that the group is of positive or negative type
if r = p"!* +1 or r = p"!* !1, respectively.

For short, we write G+ and G! for G(", $, g, *, +) and
G(", $, g, *, !), respectively.

The following theorem, due to King (1973), gives a
standardized parametric presentation of metacyclic p-
groups.

Theorem 3: Let G be a finite metacyclic p-group. Then
there exist integers ", $, *, g with ", $>0 and *, g
nonnegative, where *#min {"!1, $} and *+g#" such that
for an odd prime p, Gp(", $, g, *, +). If p = 2, then in
addition "!*>1 and G2(", $, g, *, +) or Gp(", $, g, *, !),
where in the second case g#1. Moreover, if G is of
positive type, then *>0 for all p. 

The next proposition lists some of the basic
properties and various subgroups of metacyclic p-groups:

Proposition 1: Beuerle (2005) Let G be a group of type
Gp(", $, g, *, ±) and k$1. Then we have the following
results for the order of G the center of G, the order of the
center of G the derived subgroups of G the order of the
derived subgroups of G and the exponent of G:

G+ G!

|G±| p"+$ p"+$

Z(G±) a bp pδ δ
,

{ }
a b2 21 1α δ−

,
max ,

|Z(G±)| p"+$!2* 21+$!max{1, *}

(k+1(G±)
( )

a pk α δ−
a

k2

|(k+1(G±)| pmax{0, k*!(k!1)"} 2max{0, "!k}

Exp(G±) pmax{", $+g} pmax{", $+g}

Moreover, if $>max{1, *} then Z (G!) is cyclic if and
only if g = 1.

The nonabelian tensor square is a special case of the
nonabelian tensor product which has its origin in K-theory
as well as homotopy theory. It is defined as follows:

Definition 2: Brown et al. (1987) for a group G, the
nonabelian tensor square, GqG is generated by the
symbols gqh, where g, h0G, subject to the relations:

` ( )( )gg h g h g hg g' '⊗ = ⊗ ⊗

and ( )( )g hh g h g hh h⊗ = ⊗ ⊗' '

for all g, g!, h, h!,G, where hg = hgh!1 denotes the
conjugate of g by h.

A factor group of the tensor square is the exterior
square, defined as follows:

Definition 3: Brown et al. (1987) for any group G the
exterior square of G is defined as:

( )
( )G G G G
G∧ = ⊗

∆

where,

L(G) = +xqx: x0G, and L(G) is a central subgroup of
GqG.
In (Ellis, 1995) the tensor center of a group is defined as:

( ) { }Z G a G a g g G⊗
⊗= ∈ ⊗ = ∀ ∈: ;1

Similar to the tensor center, the exterior center can be
defined as:

( ) { }Z G a G a g g G∧
∧= ∈ ∧ = ∀ ∈: ;1

Here 1q and 1v denote the identities in GqG and GvG
respectively. It can be easily shown that Zq(G) and Zv(G)
are characteristic and central subgroups of G with
Zq(G)fZv(G). 

Though the criterion for capability stated in Theorem
2 is easily formulated, the implementation is another
matter. As in all cases before, this still requires the
cumbersome process of evaluating the factor groups. Ellis
(1998) connects the epicenter with the exterior center,
providing a much more efficient procedure to determine
capability once the nonabelian tensor square is known and
obtains the desired external characterization of the
epicenter as follows:

Theorem 4: Ellis (1998) For any group G, the epicenter
coincides with the exterior center, i.e.:

Z*(G) = Z^(G)
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The method of using tensor squares in the
determination of capability was implemented by several
authors. Beuerle and Kappe (2000) characterized infinite
metacyclic groups which are capable.

Beuerle (2005) classified all finite nonabelian
metacyclic p-groups. Using this classification, we
compute the epicenter of finite nonabelian metacyclic 2-
groups of nilpotency class at least three, for some small
order groups, by using Groups, Algorithms and
Programming (GAP) software. By using the criterion
stated in Theorem 2, we determine which of them are
capable.

Groups, Algorithms and Programming (GAP)
software is used as a tool to verify the results found in
determining the capability of the groups studied. GAP is
a system for computational discrete algebra, with
emphasis on computational group theory. GAP provides
a programming language, a library of functions that
implement algebraic algorithms written in the GAP
language as well as libraries of algebraic objects such as
for all non-isomorphic groups up to order 2000 (Rainbolt
and Gallian, 2010).

Classification of metacyclic p-groups of nilpotency
class two: In this section, the classification of all finite
nonabelian metacyclic p-groups of nilpotency class two,
done by Beuerle is stated. 

Theorem 5: (Beuerle, 2005) Let G be a nonabelian
metacyclic p-group of nilpotency class two. Then G is
isomorphic to exactly one group in the following list:

1. [ ]G a b a b a b ap p p≅ = = =
−

, ; , ,
α β α δ

1

where, ", $, *,N, "$2*, *#$

2. G – Q = +a, b, a4 = 1, b2 = [a, b] = a2,

the group of quaternion of order 8.

EPICENTER COMPUTATIONS

In this section, we use GAP to develop appropriate
coding for computing the epicenter for some small order
groups of type (1), where p is odd and type (2). We
provide GAP programmes to generate general codes and
examples of groups of type (1) and type (2).

Type (1): First we use GAP programme to generate all
finite nonabelian metacyclic 2-groups of type (1) and
construct some examples.

Generating type (1): GAP coding to generate all finite
nonabelian metacyclic 2-groups of type (1) is developed
as follows:

type1: =
function (p, l, beta, n)
local F, m, a, b, G;

for m in [1..beta] do
if 2n<=l and m>=n and n>=1 then
F: = FreeGroup (2);
a: = F.1; b: = F.2
G: = F/[a^(p^l), b^(p^m), (a*b*a^(-1)*b^(-1))^(-
1)*a^(p^(l-n))];
Print("p=",p," alpha=",l," beta=",m," delta =",n,"
Order(G):",Order(G)," Order of Epicenter
(G):",Order (Epicenter (G)),"\n");
fi;

od;
end; 

We define the group with four parameters which are
p, ", $ and *. The GAP code below is used to create the
presentation of the group.

F: = FreeGroup (2);
a: = F.1; b: = F.2
G: = F/[a^(p^l), b^(p^m), (a*b*a^(-1)*b^(-1))^(-
1)*a^(p^(l-n))];

Constructing examples of type (1): Now, we define the
parameters and put them in GAP. For example, we define
p = 3, " = 2, $ = 1, ..., 6 and * = 1. First we need to read
the file and call the function.

gap> Read("metacyclic_type3.g");
gap> type3 (3, 3, 4, 2);
p = 3 alpha = 2 beta = 1 delta = 1 Order(G):27 Order of
Epicenter(G):3 
p = 3 alpha = 2 beta = 2 delta = 1 Order(G):81 Order of
Epicenter(G):1 
p = 3 alpha = 2 beta = 3 delta = 1 Order(G):243 Order of
Epicenter(G):3 
p = 3 alpha = 2 beta = 4 delta = 1 Order(G):729 Order of
Epicenter(G):9 
p = 3 alpha = 2 beta = 5 delta = 1 Order(G):2187 Order of
Epicenter(G):27 
p = 3 alpha = 2 beta = 6 delta = 1 Order(G):6561 Order of
Epicenter(G):81 
Using the coding as before, we got the following results.
gap> type1 (3, 3, 6, 1); 
p = 3 alpha = 3 beta = 1 delta = 1 Order(G):81 Order of
Epicenter(G):9 
p = 3 alpha = 3 beta = 2 delta = 1 Order(G):243 Order of
Epicenter(G):3 
p = 3 alpha = 3 beta = 3 delta = 1 Order(G):729 Order of
Epicenter(G):1 
gap> type1 (3, 4, 5, 2);
p = 3 alpha = 4 beta = 2 delta = 2 Order(G):729 Order of
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Epicenter(G):9 
p = 3 alpha = 4 beta = 3 delta = 2 Order(G):2187 Order of
Epicenter(G):3 
gap> type1 (5, 2, 5, 1);
p = 5 alpha = 2 beta = 1 delta = 1 Order(G):125 Order of
Epicenter(G):5 
p = 5 alpha = 2 beta = 2 delta = 1 Order(G):625 Order of
Epicenter(G):1 
gap> type1 (7, 2, 5, 1);
p = 7 alpha = 2 beta = 1 delta = 1 Order(G):343 Order of
Epicenter(G):7 
gap> type1 (9, 2, 5, 1);
p = 9 alpha = 2 beta = 1 delta = 1 Order(G):729 Order of
Epicenter(G):9 
gap> type1 (11, 2, 5, 1);
p = 11 alpha = 2 beta = 1 delta = 1 Order(G):1331 Order
of Epicenter(G):11 
gap> type1 (13, 2, 5, 1);
p = 13 alpha = 2 beta = 1 delta = 1 Order(G):2197 Order
of Epicenter(G):13 
gap> LogTo();
gap> quit;

RESULTS ANALYSIS

Summary of results for type (1): For short, we write Ep
(G) for the epicenter of G. A summary of GAP results for
type (1) is given in Table 1.

Remark 1: Table 1 shows that the order of all groups
computed satisfies p"+$ as stated in Proposition 1. 

Type (2): With similar objective as for groups of type (1),
we produce GAP algorithms for groups of type (2) and
compute the order of the epicenter as follows:

gap> F: = FreeGroup (2); 
<free group on the generators [ f1, f2 ]>
gap> a: = F.1; b: = F.2;
f1
f2
gap> Q: = F/[a^4,b^2*(a*b*a^(-1)*b^(-1))^(-1), b*a^(-
1)*b^(-1)*a^(-1), b^2*a^(-2)];
<fp group on the generators [ f1, f2 ]>
gap> Order (Epicenter(Q));
2
gap> LogTo();

Capability determination: Table 1 shows that the groups
of type (1) have trivial epicenter with " = $. GAP results
shows that the group of type (2), the quaternion group of
order 8, has nontrivial epicenter. Therefore, by Theorem
2,  we  conclude  that groups of type (1) are capable with

Table 1: GAP results for type (1)
# p " $ * |G|| Ep (G)|
1 3 2 1 1 27 3
2 3 2 2 1 81 1
3 3 2 3 1 243 3
4 3 2 4 1 729 9
5 3 2 5 1 2187 27
6 3 2 6 1 6561 81
7 3 3 1 1 81 9
8 3 3 2 1 243 3
9 3 3 3 1 729 1
10 3 4 2 2 729 9
11 3 4 3 2 2187 3
12 5 2 1 1 125 5
13 5 2 2 1 625 1
14 7 2 1 1 343 7
15 11 2 1 1 1331 11
16 13 2 1 1 2197 13

" = $ and the rest are not capable. Similarly, we conclude
that the quaternion group of order 8 is not capable. 

It is worth to mention that Bacon and Kappe (2003)
showed the same results for type (1), where p is odd.
Also, the results for type (2) consistent with the results
gotten by Ellis (1998) who showed that the quaternion
group:

[ ]Q a b a b a b an
n

2
2 21= = = =, ; , ,

of order 2n is not capable.
Based on the above, we write the results in the

following theorem:

Theorem 6: Let G be a metacyclic p-group of nilpotecny
class two. Then G is capable if and only if G is of type (1)
with " = $.

CONCLUSION

In this study we have computed the epicenter of finite
nonabelian metacyclic 2-groups of nilpotency class two,
for some small order groups and determined their
capability. We showed that the epicenter of groups of type
(1) is trivial with " = $ and the epicenter of the group of
type (2), the quaternion group of order 8, is nontrivial.
Also, we showed that the groups of type (1) are capable
with " = $ whereas the quaternion group of order 8 is not
capable.
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