The Generalization of the Exterior Square of a Bieberbach Group with Symmetric Point Group

Nor’ashiqin Mohd. Idrus ${ }^{1, *}$, Tan Yee Ting ${ }^{1}$, Rohaidah Masri ${ }^{1}$, Nor Haniza Sarmin ${ }^{2}$ and Hazzirah Izzati Mat Hassim ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak, Malaysia
${ }^{2}$ Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
*Corresponding author: norashiqin@fsmt.upsi.edu.my

Abstract

The exterior square is a homological functor originated in the homotopy theory, while Bieberbach groups with symmetric point group are torsion free crystallographic groups. In this paper, the generalization of the exterior square of a Bieberbach group with symmetric point group is constructed up to finite dimension.

Keywords. Exterior square; Bieberbach group; Symmetric point group
MSC. 20C40; 20J05; 18G50; 20K20

Received: January 30, 2016
Accepted: August 14, 2016

[^0]
1. Introduction

The exterior square of a group $G, G \wedge G$ is defined as $G \wedge G=(G \otimes G) / \nabla(G)$ where $G \otimes G$ is the nonabelian tensor square of G and $\nabla(G)$ is the central subgroup of $G \otimes G$. For g and h in G, the $\operatorname{coset}(g \otimes h) \nabla(G)$ is denoted by $g \wedge h$ [2]. $G \otimes G$ is a group generated by the symbols $g \otimes h$, for all $g, h \in G$, subject to relations $g h \otimes k=\left(g^{h} \otimes k^{h}\right)(h \otimes k)$ and $g \otimes h k=(g \otimes k)\left(g^{k} \otimes h^{k}\right)$ for all $g, h, k \in G$ where $g^{h}=h^{-1} g h[1]$. Meanwhile, $\nabla(G)$ is generated by the element $g \otimes g$, for all $g \in G$ [2].

In [6], the exterior square of a Bieberbach group of dimension four with symmetric point group of order six, $B_{1}(4)$ was computed and is given in the following theorem.

Theorem 1. The exterior square of $B_{1}(4)$ is nonabelian and is given as follows:

$$
B_{1}(4) \wedge B_{1}(4)=\left\langle\begin{array}{l|l}
g_{1}, g_{2} \ldots g_{5} & \begin{array}{l}
g_{1}^{2}=\left[g_{3}, g_{4}\right]=\left[g_{4}, g_{5}\right]=1, \\
{\left[g_{2}, g_{3}\right]=g_{3}^{-1} g_{5}^{-1} g_{4}^{2} g_{1}^{-1},\left[g_{2}, g_{4}\right]=g_{3}^{-2} g_{5}^{-2} g_{4}^{4},} \\
\\
{\left[g_{2}, g_{5}\right]=g_{3}^{-1} g_{4}^{2} g_{1}^{-1},\left[g_{3}, g_{5}\right]=g_{1}^{-1},\left[g_{1}, g_{j}\right]=1}
\end{array}
\end{array}\right\rangle
$$

for $1 \leq j \leq 5$ where $g_{1}=l_{1} \wedge l_{2}, g_{2}=a \wedge b, g_{3}=a \wedge l_{1}, g_{4}=a \wedge l_{2}$ and $g_{5}=b \wedge l_{2}$.

In this paper, the exterior square of the group B_{1} is generalized up to dimension n, denoted by $B_{1}(n) \wedge B_{1}(n)$.

2. Preparatory Results

In this section, some basic definitions and some preparatory results are presented.
Definition 1 ([4]). Let G be a group with presentation $\langle G \mid R\rangle$ and let G^{φ} be an isomorphic copy of G via the mapping $\varphi: g \rightarrow g^{\varphi}$ for all $g \in G$. The group $v(G)$ is defined to be

$$
v(G)=\left\langle G, G^{\varphi} \mid R, R^{\varphi},{ }^{x}\left[g, h^{\varphi}\right]=\left[{ }^{x} g,\left({ }^{x} h\right)^{\varphi}\right]={ }^{x \varphi}\left[g, h^{\varphi}\right], \forall x, g, h \in G\right\rangle .
$$

Theorem 2 ([3]). Let G be a group. The map $\sigma: G \otimes G \rightarrow\left[G, G^{\varphi}\right] \triangleleft v(G)$ defined by $\sigma(g \otimes h)=$ $\left[g, h^{\varphi}\right]$ for all g, h in G is an isomorphism.

Lemma 1 ([4]). Let x and y be element of G such that $[x, y]=1$. Then in $v(G),\left[x, y^{\varphi}\right]$ is central in $v(G)$.

In [5], the generalized presentation of the polycyclic presentation of the group B_{1} has been constructed as in Lemma2 Besides, the generalizations of the central subgroup of $B_{1}(n) \otimes B_{1}(n)$ of the group, $\nabla\left(B_{1}(n)\right)$ and the nonabelian tensor square of the group, $B_{1}(n) \otimes B_{1}(n)$ and are also constructed in [5] as given in Theorem 4 and Theorem 5, respectively.

Lemma 2 ([5]). The polycyclic presentation of $B_{1}(n)$ is consistent where

$$
\begin{aligned}
& B_{1}(n)=\left\langle a, b, l_{1}, l_{2}, l_{3}, l_{4}, \ldots, l_{n}\right| a^{2}=l_{3}, b^{3}=l_{4}, b^{a}=b^{2} l_{4}^{-1}, l_{1}^{a}=l_{1} l_{2}^{-1}, l_{2}^{a}=l_{2}^{-1}, l_{3}^{a}=l_{3}, \\
& \\
& \quad l_{4}^{a}=l_{4}^{-1}, l_{p}^{a}=l_{p}, l_{1}^{b}=l_{1}^{-1} l_{2}, l_{2}^{b}=l_{1}^{-1}, l_{3}^{b}=l_{3}, l_{4}^{b}=l_{4}, l_{p}^{b}=l_{p}, l_{j}^{l_{i}}=l_{j}, l_{j}^{-1}=l_{j} \\
& \quad \text { for } 1 \leq i<j \leq n \text { and } 5 \leq p \leq n\rangle .
\end{aligned}
$$

Theorem $3\left(\nabla\left(B_{1}(n)\right)\right.$ [5]). The subgroup $\nabla\left(B_{1}(n)\right)$ is given as

$$
\begin{aligned}
\nabla\left(B_{1}(n)\right) & =\left\langle\left[a, a^{\varphi}\right],\left[b, b^{\varphi}\right],\left[l_{p}, l_{p}^{\varphi}\right],\left[a, b^{\varphi}\right]\left[b, a^{\varphi}\right],\left[a, l_{p}^{\varphi}\right]\left[l_{p}, a^{\varphi}\right],\left[b, l_{p}^{\varphi}\right]\left[l_{p}, b^{\varphi}\right],\left[l_{p}, l_{q}^{\varphi}\right]\left[l_{q}, l_{p}^{\varphi}\right]\right\rangle \\
& \cong C_{0}^{\frac{(n-3)(n-2)}{2}} \times C_{2}^{n-3} \times C_{4} \text { for } 5 \leq p<q \leq n .
\end{aligned}
$$

Theorem $4\left(B_{1}(n) \otimes B_{1}(n)\right.$ [5]). The nonabelian tensor square of $B_{1}(n)$ is nonabelian and is given as follows:

$$
\begin{gathered}
B_{1}(n) \otimes B_{1}(n)=\left\langle g_{1}, g_{2} \ldots g_{(n-2)^{2}+4} g_{2}^{4}=g_{3}^{2}=g_{4}^{2}=g_{t}^{2}=g_{u}^{2}=\left[g_{6}, g_{7}\right]=\left[g_{7}, g_{8}\right]=1,\right. \\
\\
{\left[g_{5}, g_{6}\right]=g_{6}^{-1} g_{8}^{-1} g_{7}^{2} g_{4}^{-1},\left[g_{5}, g_{7}\right]=g_{6}^{-2} g_{8}^{-2} g_{7}^{4},} \\
\\
{\left[g_{5}, g_{8}\right]=g_{6}^{-1} g_{7}^{2} g_{4}^{-1},\left[g_{6}, g_{8}\right]=g_{4}^{-1},\left[g_{i}, g_{j}\right]=\left[g_{t}, g_{j}\right]} \\
\left.=\left[g_{u}, g_{j}\right]=\left[g_{v}, g_{j}\right]=\left[g_{w}, g_{j}\right]=\left[g_{x}, g_{j}\right]=\left[g_{y}, g_{j}\right]=\left[g_{z}, g_{j}\right]=1\right\rangle
\end{gathered}
$$

for $1 \leq i \leq 4,1 \leq j \leq(n-2)^{2}+4,9 \leq t, u \leq 2 n$ and $2 n+1 \leq v, w, x, y, z \leq(n-2)^{2}+4$ where

$$
\begin{aligned}
& g_{1}=a \otimes a, g_{2}=b \otimes b, g_{3}=(a \otimes b)(b \otimes a), g_{4}=l_{1} \otimes l_{2}, g_{5}=a \otimes b, g_{6}=a \otimes l_{1}, g_{7}=a \otimes l_{2}, \\
& g_{8}=b \otimes l_{2}, g_{t}=b \otimes l_{p}, g_{u}=\left(b \otimes l_{p}\right)\left(l_{p} \otimes b\right), g_{v}=l_{p} \otimes l_{p}, g_{w}=a \otimes l_{p}, g_{x}=l_{p} \otimes l_{q}, \\
& g_{y}=\left(a \otimes l_{p}\right)\left(l_{p} \otimes a\right) \text { and } g_{z}=\left(l_{p} \otimes l_{q}\right)\left(l_{q} \otimes l_{p}\right) \text { for } 5 \leq p<q \leq n .
\end{aligned}
$$

3. Main Result

In this section, the generalization of $B_{1}(n) \wedge B_{1}(n)$ is constructed as in the following theorem.
Theorem $5\left(B_{1}(n) \wedge B_{1}(n)\right)$. The nonabelian exterior square of $B_{1}(n)$ is nonabelian and is given as follows:

$$
\begin{aligned}
B_{1}(n) \wedge B_{1}(n)=\langle & \left\langle g_{1}, g_{2} \ldots g_{\frac{(n-3)(n-2)}{2}+4}\right| g_{1}^{2}=g_{t}^{2}=\left[g_{3}, g_{4}\right]=\left[g_{3}, g_{5}\right]=1, \\
& {\left[g_{2}, g_{3}\right]=g_{3}^{-1} g_{5}^{-1} g_{4}^{2} g_{1}^{-1},\left[g_{2}, g_{4}\right]=g_{3}^{-2} g_{5}^{-2} g_{4}^{4},\left[g_{2}, g_{5}\right]=g_{3}^{-1} g_{4}^{2} g_{1}^{-1}, } \\
& {\left.\left[g_{3}, g_{5}\right]=g_{1}^{-1},\left[g_{1}, g_{j}\right]=\left[g_{t}, g_{j}\right]=\left[g_{w}, g_{j}\right]=1\right\rangle }
\end{aligned}
$$

for $1 \leq j \leq \frac{(n-3)(n-2)}{2}+4,6 \leq t \leq n+1$ and $n+2 \leq w \leq \frac{(n-3)(n-2)}{2}+4$ where $g_{1}=l_{1} \wedge l_{2}, g_{2}=a \wedge b, g_{3}=a \wedge l_{1}, g_{4}=a \wedge l_{2}, g_{5}=b \wedge l_{2}, g_{t}=b \wedge l_{p}$ and $g_{w}=a \wedge l_{p}$ for $5 \leq p<q \leq n$.

Proof. $B_{1}(n) \wedge B_{1}(n)$ is defined as the quotient of $B_{1}(n) \otimes B_{1}(n)$ by $\nabla\left(B_{1}(n)\right)$. Hence it is generated by the cosets $(a \otimes a) \nabla\left(B_{1}(n)\right),(b \otimes b) \nabla\left(B_{1}(n)\right),((a \otimes b)(b \otimes a)) \nabla\left(B_{1}(n)\right),\left(l_{1} \otimes l_{2}\right) \nabla\left(B_{1}(n)\right),(a \otimes$ $b) \nabla\left(B_{1}(n)\right),\left(a \otimes l_{2}\right) \nabla\left(B_{1}(n)\right),\left(l_{p} \otimes l_{p}\right) \nabla\left(B_{1}(n)\right),\left(a \otimes l_{p}\right) \nabla\left(B_{1}(n)\right),\left(b \otimes l_{p}\right) \nabla\left(B_{1}(n)\right),\left(l_{p} \otimes l_{q}\right) \nabla\left(B_{1}(n)\right)$, $\left(\left(a \otimes l_{p}\right)\left(l_{p} \otimes a\right)\right) \nabla\left(B_{1}(n)\right),\left(\left(b \otimes l_{p}\right)\left(l_{p} \otimes b\right)\right) \nabla\left(B_{1}(n)\right),\left(\left(l_{p} \otimes l_{q}\right)\left(l_{q} \otimes l_{p}\right)\right) \nabla\left(B_{1}(n)\right)$. Since $a \otimes a, b \otimes b$, $(a \otimes b)(b \otimes a), l_{p} \otimes l_{p},\left(a \otimes l_{p}\right)\left(l_{p} \otimes a\right),\left(b \otimes l_{p}\right)\left(l_{p} \otimes b\right)$ and $\left(l_{p} \otimes l_{q}\right)\left(l_{q} \otimes l_{p}\right)$ are in $\nabla\left(B_{1}(n)\right)$, then it can be concluded that $((a \otimes b)(b \otimes a)) \nabla\left(B_{1}(n)\right)=\nabla\left(B_{1}(n)\right),\left(\left(a \otimes l_{p}\right)\left(l_{p} \otimes a\right)\right) \nabla\left(B_{1}(n)\right)=\nabla\left(B_{1}(n)\right)$, $(a \otimes a) \nabla\left(B_{1}(n)\right)=\nabla\left(B_{1}(n)\right),\left(\left(b \otimes l_{p}\right)\left(l_{p} \otimes b\right)\right) \nabla\left(B_{1}(n)\right)=\nabla\left(B_{1}(n)\right)(b \otimes b) \nabla\left(B_{1}(n)\right)=\nabla\left(B_{1}(n)\right),\left(\left(l_{p} \otimes\right.\right.$ $\left.\left.l_{q}\right)\left(l_{q} \otimes l_{p}\right)\right) \nabla\left(B_{1}(n)\right)=\nabla\left(B_{1}(n)\right)$ and $\left(l_{p} \otimes l_{p}\right) \nabla\left(B_{1}(n)\right)=\nabla\left(B_{1}(n)\right)$. Thus, $B_{1}(n) \wedge B_{1}(n)$ is generated by the elements as below.

$$
\begin{aligned}
& B_{1}(n) \wedge B_{1}(n)=\left\langle\left(l_{1} \otimes l_{2}\right) \nabla\left(B_{1}(n)\right),(a \otimes b) \nabla\left(B_{1}(n)\right),\left(a \otimes l_{1}\right) \nabla\left(B_{1}(n)\right),\left(a \otimes l_{2}\right) \nabla\left(B_{1}(n)\right),\right. \\
&\left.\left(b \otimes l_{2}\right) \nabla\left(B_{1}(n)\right),\left(a \otimes l_{p}\right) \nabla\left(B_{1}(n)\right),\left(b \otimes l_{p}\right) \nabla\left(B_{1}(n)\right),\left(l_{p} \otimes l_{q}\right) \nabla\left(B_{1}(n)\right)\right\rangle \\
&=\left\langle l_{1} \wedge l_{2}, a \wedge b, a \wedge l_{1}, a \wedge l_{2}, b \wedge l_{2}, a \wedge l_{p}, b \wedge l_{p}, l_{p} \wedge l_{q}\right\rangle .
\end{aligned}
$$

By Theorem 3 and Theorem 4 , both $\left[l_{1}, l_{2}^{\varphi}\right]$ and $\left[b, l_{p}^{\varphi}\right]$ have order 2 and $\left[a, b^{\varphi}\right],\left[a, l_{1}^{\varphi}\right],\left[a, l_{2}^{\varphi}\right]$, $\left[b, l_{2}^{\varphi}\right],\left[a, l_{p}^{\varphi}\right]$ and $\left[l_{p}, l_{q}^{\varphi}\right]$ have infinite order. Since $5 \leq p<q \leq n$, there are $n-4$ generators in terms of $\left[a, l_{p}^{\varphi}\right]$ and $\left[b, l_{p}^{\varphi}\right]$ and $\frac{(n-5)(n-4)}{2}$ generators in term of $\left[l_{p}, l_{q}^{\varphi}\right]$. Thus, there are a total of $\frac{(n-3)(n-2)}{2}+4$ generators in $B_{1}(n) \wedge B_{1}(n)$.

In Theorem 1, $B_{1}(4) \wedge B_{1}(4)$ is showed nonabelian. It follows that $B_{1}(n) \wedge B_{1}(n)$ is also nonabelian. Thus, the presentation of $B_{1}(n) \wedge B_{1}(n)$ is constructed. Let $g_{1}=l_{1} \wedge l_{2}, g_{2}=a \wedge b$, $g_{3}=a \wedge l_{1}, g_{4}=a \wedge l_{2}, g_{5}=b \wedge l_{2}, g_{t}=b \wedge l_{p}$ and $g_{w}=a \wedge l_{p}$. By Theorem $1, g_{1}^{2}=1$ since g_{1} has order 2. Also, $g_{t}^{2}=1$ since g_{t} has order 2. Since there are $n-4$ generators in terms of g_{t}, then there are $n+1$ generators included the generators in terms of g_{t}. Thus, $6 \leq t \leq n+1$. By Lemma 1, g_{1}, g_{t} and g_{w} are central in $v\left(B_{1}(n)\right.$). Hence, $\left[g_{1}, g_{j}\right]=\left[g_{t}, g_{j}\right]=\left[g_{w}, g_{j}\right]=1$ for $1 \leq j \leq \frac{(n-3)(n-2)}{2}+4$. Since there are $\frac{(n-3)(n-2)}{2}+4$ generators in $B_{1}(n) \wedge B_{1}(n)$, then $n+2 \leq w \leq \frac{(n-3)(n-2)}{2}+4$. Besides, by Theorem 1]. $\left[g_{2}, g_{3}\right]=g_{3}^{-1} g_{5}^{-1} g_{4}^{2} g_{1}^{-1},\left[g_{2}, g_{4}\right]=g_{3}^{-2} g_{5}^{-2} g_{4}^{4}$, $\left[g_{2}, g_{5}\right]=g_{6}^{-1} g_{4}^{2} g_{1}^{-1},\left[g_{3}, g_{4}\right]=1,\left[g_{3}, g_{5}\right]=g_{1}^{-1}$ and $\left[g_{4}, g_{5}\right]=1$. Hence, the generalized presentation of $B_{1}(n) \wedge B_{1}(n)$ is showed as in Theorem 5 .

4. Conclusion

The exterior square of a Bieberbach group with symmetric point group of order six is generalized up to finite dimension. This finding can be further used to construct the generalization of other homological functors such as the Schur multiplier.

Acknowledgement

The second author is indebted to her MyPhD Scholarship.

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

[1] R. Brown and J. L. Loday, Van kampen theorems for diagrams of spaces, Topology 26 (1987), 311-335.
[2] G. Ellis, On the computation of certain homotopical functors, LMS Journal of Computation and Mathematics 1 (1998), 25-41.
[3] G. Ellis and F. Leonard, Computing Schur multipliers and tensor products of finite groups, Proc. Roy. Irish Acad. 95A (2) (1995), 137-147.
[4] N. R. Rocco, On a construction related to the nonabelian tensor square of a group, Bol. Soc. Brasil. Mat. (N.S.) 22 (1991), 63-79.
[5] Y. T. Tan, N. Mohd. Idrus, R. Masri, N. H. Sarmin and H. I. Mat Hassim, On the generalization of some homological functors of a Bieberbach group with symmetric point group, submitted to Bulletin of the Malaysian Mathematical Sciences Society.
[6] Y. T. Tan, N. Mohd. Idrus, R. Masri, W. N. F. Wan Mohd Fauzi, N. H. Sarmin and H. I. Mat Hassim, The nonabelian exterior square of a Bieberbach group with symmetric point group of order six, accepted by Journal of Science and Mathematics.

[^0]: Copyright © 2016 Nor’ashiqin Mohd. Idrus, Tan Yee Ting, Rohaidah Masri, Nor Haniza Sarmin and Hazzirah Izzati Mat Hassim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

