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1. Introduction

The exterior square of a group G, G∧G is defined as G∧G = (G⊗G)/∇(G) where G⊗G is the
nonabelian tensor square of G and ∇(G) is the central subgroup of G ⊗G. For g and h in G,
the coset (g⊗h)∇(G) is denoted by g∧h [2]. G⊗G is a group generated by the symbols g⊗h,
for all g,h ∈G, subject to relations gh⊗k = (gh ⊗kh)(h⊗k) and g⊗hk = (g⊗k)(gk ⊗hk) for all
g,h,k ∈ G where gh = h−1 gh [1]. Meanwhile, ∇(G) is generated by the element g⊗ g, for all
g ∈G [2].

In [6], the exterior square of a Bieberbach group of dimension four with symmetric point
group of order six, B1(4) was computed and is given in the following theorem.

Theorem 1. The exterior square of B1(4) is nonabelian and is given as follows:

B1(4)∧B1(4)=
〈

g1, g2 . . . g5

∣∣∣ g2
1 = [g3, g4]= [g4, g5]= 1,

[g2, g3]= g−1
3 g−1

5 g2
4 g−1

1 , [g2, g4]= g−2
3 g−2

5 g4
4,

[g2, g5]= g−1
3 g2

4 g−1
1 , [g3, g5]= g−1

1 , [g1, g j]= 1

〉

for 1≤ j ≤ 5 where g1 = l1 ∧ l2, g2 = a∧b, g3 = a∧ l1, g4 = a∧ l2 and g5 = b∧ l2.

In this paper, the exterior square of the group B1 is generalized up to dimension n, denoted
by B1(n)∧B1(n).

2. Preparatory Results

In this section, some basic definitions and some preparatory results are presented.

Definition 1 ( [4]). Let G be a group with presentation 〈G | R〉 and let Gϕ be an isomorphic
copy of G via the mapping ϕ : g → gϕ for all g ∈G. The group ν(G) is defined to be

ν(G)= 〈
G,Gϕ | R,Rϕ, x[g,hϕ]= [ x g, ( xh)ϕ]= xϕ[g,hϕ], ∀ x, g,h ∈G

〉
.

Theorem 2 ( [3]). Let G be a group. The map σ : G⊗G → [G,Gϕ]/ν(G) defined by σ(g⊗h) =
[g,hϕ] for all g, h in G is an isomorphism.

Lemma 1 ( [4]). Let x and y be element of G such that [x, y]= 1. Then in ν(G), [x, yϕ] is central
in ν(G).

In [5], the generalized presentation of the polycyclic presentation of the group B1 has been
constructed as in Lemma 2. Besides, the generalizations of the central subgroup of B1(n)⊗B1(n)
of the group, ∇(B1(n)) and the nonabelian tensor square of the group, B1(n)⊗B1(n) and are also
constructed in [5] as given in Theorem 4 and Theorem 5, respectively.
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Lemma 2 ( [5]). The polycyclic presentation of B1(n) is consistent where

B1(n)= 〈a,b, l1, l2, l3, l4, . . . , ln | a2 = l3,b3 = l4,ba = b2l−1
4 , la

1 = l1l−1
2 , la

2 = l−1
2 , la

3 = l3,

la
4 = l−1

4 , la
p = lp, lb

1 = l−1
1 l2, lb

2 = l−1
1 , lb

3 = l3, lb
4 = l4, lb

p = lp, l l i
j = l j, l

l−1
i

j = l j

for 1≤ i < j ≤ n and 5≤ p ≤ n〉.
Theorem 3 (∇(B1(n)) [5]). The subgroup ∇(B1(n)) is given as

∇(B1(n))= 〈[a,aϕ], [b,bϕ], [lp, lϕp], [a,bϕ][b,aϕ], [a, lϕp][lp,aϕ], [b, lϕp][lp,bϕ], [lp, lϕq ][lq, lϕp]〉

∼= C
(n−3)(n−2)

2
0 ×Cn−3

2 ×C4 for 5≤ p < q ≤ n.

Theorem 4 (B1(n)⊗B1(n) [5]). The nonabelian tensor square of B1(n) is nonabelian and is
given as follows:

B1(n)⊗B1(n)= 〈g1, g2 . . . g(n−2)2+4 g4
2 = g2

3 = g2
4 = g2

t = g2
u = [g6, g7]= [g7, g8]= 1,

[g5, g6]= g−1
6 g−1

8 g2
7 g−1

4 , [g5, g7]= g−2
6 g−2

8 g4
7,

[g5, g8]= g−1
6 g2

7 g−1
4 , [g6, g8]= g−1

4 , [g i, g j]= [gt, g j]

= [gu, g j]= [gv, g j]= [gw, g j]= [gx, g j]= [g y, g j]= [gz, g j]= 1〉
for 1≤ i ≤ 4, 1≤ j ≤ (n−2)2 +4, 9≤ t,u ≤ 2n and 2n+1≤ v,w, x, y, z ≤ (n−2)2 +4 where

g1 = a⊗a, g2 = b⊗b, g3 = (a⊗b)(b⊗a), g4 = l1 ⊗ l2, g5 = a⊗b, g6 = a⊗ l1, g7 = a⊗ l2,

g8 = b⊗ l2, gt = b⊗ lp, gu = (b⊗ lp)(lp ⊗b), gv = lp ⊗ lp, gw = a⊗ lp, gx = lp ⊗ lq,

g y = (a⊗ lp)(lp ⊗a) and gz = (lp ⊗ lq)(lq ⊗ lp) for 5≤ p < q ≤ n.

3. Main Result

In this section, the generalization of B1(n)∧B1(n) is constructed as in the following theorem.

Theorem 5 ( B1(n)∧B1(n)). The nonabelian exterior square of B1(n) is nonabelian and is given
as follows:

B1(n)∧B1(n)= 〈g1, g2 . . . g (n−3)(n−2)
2 +4 | g2

1 = g2
t = [g3, g4]= [g3, g5]= 1,

[g2, g3]= g−1
3 g−1

5 g2
4 g−1

1 , [g2, g4]= g−2
3 g−2

5 g4
4, [g2, g5]= g−1

3 g2
4 g−1

1 ,

[g3, g5]= g−1
1 , [g1, g j]= [gt, g j]= [gw, g j]= 1〉

for 1≤ j ≤ (n−3)(n−2)
2 +4, 6≤ t ≤ n+1 and n+2≤ w ≤ (n−3)(n−2)

2 +4 where

g1 = l1 ∧ l2, g2 = a∧b, g3 = a∧ l1, g4 = a∧ l2, g5 = b∧ l2, gt = b∧ lp

and gw = a∧ lp for 5≤ p < q ≤ n.
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Proof. B1(n)∧B1(n) is defined as the quotient of B1(n)⊗B1(n) by ∇(B1(n)). Hence it is generated
by the cosets (a⊗ a)∇(B1(n)), (b ⊗ b)∇(B1(n)), ((a⊗ b)(b ⊗ a))∇(B1(n)), (l1 ⊗ l2)∇(B1(n)), (a⊗
b)∇(B1(n)), (a⊗ l2)∇(B1(n)), (lp⊗ lp)∇(B1(n)), (a⊗ lp)∇(B1(n)), (b⊗ lp)∇(B1(n)), (lp⊗ lq)∇(B1(n)),
((a⊗ lp)(lp ⊗a))∇(B1(n)), ((b⊗ lp)(lp ⊗b))∇(B1(n)), ((lp ⊗ lq)(lq ⊗ lp))∇(B1(n)). Since a⊗a, b⊗b,
(a⊗ b)(b⊗a), lp ⊗ lp, (a⊗ lp)(lp ⊗a), (b⊗ lp)(lp ⊗ b) and (lp ⊗ lq)(lq ⊗ lp) are in ∇(B1(n)), then
it can be concluded that ((a⊗b)(b⊗a))∇(B1(n))=∇(B1(n)), ((a⊗ lp)(lp ⊗a))∇(B1(n))=∇(B1(n)),
(a⊗a)∇(B1(n))=∇(B1(n)), ((b⊗ lp)(lp ⊗b))∇(B1(n))=∇(B1(n))(b⊗b)∇(B1(n))=∇(B1(n)), ((lp ⊗
lq)(lq⊗lp))∇(B1(n))=∇(B1(n)) and (lp⊗lp)∇(B1(n))=∇(B1(n)). Thus, B1(n)∧B1(n) is generated
by the elements as below.

B1(n)∧B1(n)= 〈(l1 ⊗ l2)∇(B1(n)), (a⊗b)∇(B1(n)), (a⊗ l1)∇(B1(n)), (a⊗ l2)∇(B1(n)),

(b⊗ l2)∇(B1(n)), (a⊗ lp)∇(B1(n)), (b⊗ lp)∇(B1(n)), (lp ⊗ lq)∇(B1(n))〉

= 〈l1 ∧ l2,a∧b,a∧ l1,a∧ l2,b∧ l2,a∧ lp,b∧ lp, lp ∧ lq〉.

By Theorem 3 and Theorem 4, both [l1, lϕ2 ] and [b, lϕp] have order 2 and [a,bϕ], [a, lϕ1 ], [a, lϕ2 ],
[b, lϕ2 ], [a, lϕp] and [lp, lϕq ] have infinite order. Since 5≤ p < q ≤ n, there are n−4 generators in
terms of [a, lϕp] and [b, lϕp] and (n−5)(n−4)

2 generators in term of [lp, lϕq ]. Thus, there are a total of
(n−3)(n−2)

2 +4 generators in B1(n)∧B1(n).

In Theorem 1, B1(4)∧B1(4) is showed nonabelian. It follows that B1(n)∧B1(n) is also
nonabelian. Thus, the presentation of B1(n)∧B1(n) is constructed. Let g1 = l1 ∧ l2, g2 = a∧b,
g3 = a∧ l1, g4 = a∧ l2, g5 = b∧ l2, gt = b∧ lp and gw = a∧ lp. By Theorem 1, g2

1 = 1 since g1

has order 2. Also, g2
t = 1 since gt has order 2. Since there are n−4 generators in terms of

gt, then there are n+1 generators included the generators in terms of gt. Thus, 6≤ t ≤ n+1.
By Lemma 1, g1, gt and gw are central in ν(B1(n)). Hence, [g1, g j] = [gt, g j] = [gw, g j] = 1
for 1 ≤ j ≤ (n−3)(n−2)

2 + 4. Since there are (n−3)(n−2)
2 + 4 generators in B1(n) ∧ B1(n), then

n+2 ≤ w ≤ (n−3)(n−2)
2 +4. Besides, by Theorem 1, [g2, g3] = g−1

3 g−1
5 g2

4 g−1
1 , [g2, g4] = g−2

3 g−2
5 g4

4,
[g2, g5] = g−1

6 g2
4 g−1

1 , [g3, g4] = 1, [g3, g5] = g−1
1 and [g4, g5] = 1. Hence, the generalized

presentation of B1(n)∧B1(n) is showed as in Theorem 5.

4. Conclusion

The exterior square of a Bieberbach group with symmetric point group of order six is generalized
up to finite dimension. This finding can be further used to construct the generalization of other
homological functors such as the Schur multiplier.
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