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Abstract. In this paper we introduce a new variant of splicing systems,
called weighted splicing systems, and establish some basic properties of
language families generated by this type of splicing systems. We show
that a simple extension of splicing systems with weights can increase the
computational power of splicing systems with finite components.

1 Introduction

DNA computing is one of the most exciting new developments of computer sci-
ence from both theoretical and practical points of view. DNA computing mod-
els use Watson-Crick complementary of DNA molecules (sequences), which are
double stranded structures composed of four nucleotides A (adenine), C (cy-
tosine), G (guanine), and T (thymine). According to Watson-Crick comple-
mentary, adenine always bonds with thymine, and guanine with cytosine. This
feature of DNA molecules makes possible only to check the information encoded
on a single strand and makes far-reaching conclusions since the information on
the other strand can be decoded according to the complementary. Another fea-
ture of DNA molecules is the massive parallelism of DNA strands, which allows
constructing many copies of DNA strands and carrying out operations on the
encoded information simultaneously. The use of these two fundamental features
of DNA molecules has already illustrated that DNA based computers can solve
many computationally intractable problems: Hamiltonian path problem (Adle-
man, [1]), the satisfiability problem for arbitrary contact networks (Lipton, [2]),
the satisfiability problem for Boolean circuits (Boneh et al., [3]), etc.

One of the early theoretical proposals for DNA based computation was made
by Head [4] who used the splicing operation – a formal model of the cutting and
recombination of DNA molecules under the influence of restriction enzymes. This
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process works as follows: two DNA molecules are cut at specific subsequences
and the first part of one molecule is connected to the second part of the other
molecule, and vice versa. This process can be formalized as an operation on
strings, described by a so-called splicing rule, which are the basis of a computa-
tional model called a splicing system (or H system). A system starts from a given
set of strings (axioms) and produces a language by iterated splicing according
to a given set of splicing rules.

Since splicing systems with finite sets of axioms and rules generate only regu-
lar languages (see [5]), several restrictions in the use of rules have been considered
(see [6]), which increase the computational power up to the recursively enumer-
able languages. This is important from the point of view of DNA computing:
splicing systems with restrictions can be considered as theoretical models of
universal programmable DNA based computers.

In this paper we define another restriction of splicing systems, called weighted
splicing systems, associating weights with the axioms, and calculating the weight
w(z) of the string z generated from two strings x and y from their weights
w(x) and w(y) according to the operation � defined on weights, i.e., w(z) =
w(x) � w(y). Then we consider several types of threshold languages generated
by weighted splicing systems considering different weighting spaces and cut-
points. We show that the selection of weighting spaces and cut-points effect to
the generative power of splicing systems.

We should mention that weighted grammars and automata have been widely
investigated in formal language theory since they were introduced in different
forms in the 1960’s (for instance, see[7-12]). On the one hand, the study of
weighted grammars and automata shows that weights can increase the genera-
tive power of usual grammars and automata, and on the other hand, they help
to construct more accurate models for stochastic phenomena and processes ap-
pearing in many applications of formal language theory. For instance, the use of
weights makes possible to develop more efficient parsing and tagging algorithms
for the natural and programming language processing.

This paper is organized as follows. Section 2 contains some necessary defini-
tions and notations from the theories of formal languages and splicing systems.
The concepts of weighted splicing systems and threshold languages generated
by weighted splicing systems are introduced in Section 3. Section 4 illustrates
the power of weighted splicing systems: it shows that some weighted splicing
systems of finite components can generate even non-context-free languages. Sec-
tion 5 discusses some open problems and possible topics for future research in
this direction.

2 Preliminaries

In this section we recall some prerequisites, by giving basic notions and notations
of the theories of formal languages and splicing systems which are used in sequel.
The reader is referred to [6,13,14] for further information.

Throughout the paper we use the following general notations. The symbol
∈ denotes the membership of an element to a set while the negation of set
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membership is denoted by �∈. The inclusion is denoted by ⊆ and the strict
(proper) inclusion is denoted by ⊂. ∅ denotes the empty set. The sets of in-
tegers and positive rational numbers are denoted by Z and Q+, respectively.
The cardinality of a set X is denoted by |X |. The families of recursively enu-
merable, context-sensitive, context-free, linear, regular and finite languages are
denoted by RE, CS, CF, LIN, REG and FIN, respectively. For these language
families, the next strict inclusions, named Chomsky hierarchy, hold:

Theorem 1 ([ ?? ]). FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.

Further, we briefly cite some basic definitions and results of iterative splicing
systems which are needed in the next section.

Let V be an alphabet, and #, $ �∈ V be two special symbols. A splicing rule
over V is a string of the form

r = u1#u2$u3#u4, where u1, u2, u3, u4 ∈ V ∗.

For such a rule r ∈ R and strings x, y, z ∈ V ∗, we write

(x, y) �r z if and only if x = x1u1u2x2, y = y1u3u4y2, and z = x1u1u4y2,

for some x1, x2, y1, y2 ∈ V ∗.
z is said to be obtained by splicing x, y, as indicated by the rule r; u1u2 and

u3u4 are called the sites of the splicing. We call x the first term and y the second
term of the splicing operation.

An H scheme is a pair σ = (V,R), where V is an alphabet and R ⊆
V ∗#V ∗$V ∗#V ∗ is a set of splicing rules. For a given H scheme σ = (V,R)
and a language L ⊆ V ∗, we write

σ(L) = {z ∈ V ∗ | (x, y) �r z, for some x, y ∈ L, r ∈ R},
and we define

σ∗(L) =
⋃

i≥0

σi(L)

by

σ0(L) =L,

σi+1(L) =σi(L) ∪ σ(σi(L)), i ≥ 0.

An extended H system is a construct γ = (V, T,A,R), where V is an alpha-
bet, T ⊆ V is the terminal alphabet, A ⊆ V ∗ is the set of axioms, and
R ⊆ V ∗#V ∗$V ∗#V ∗ is the set of splicing rules. When T = V , the system
is said to be non-extended. The language generated by γ is defined by

L(γ) = σ∗(A) ∩ T ∗.

EH(F1, F2) denotes the family of languages generated by extended H systems
γ = (V, T,A,R) with A ∈ F1 and R ∈ F2 where

F1, F2 ∈ {FIN,REG,CF,LIN,CS,RE}.
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Theorem 2 ([6]). The relations in the following table hold, where at the in-
tersection of the row marked with F1 with the column marked with F2 there
appear either the family EH(F1, F2) or two families F3, F4 such that F3 ⊂
EH(F1, F2) ⊆ F4.

�����F1
F2

FIN REG LIN CF CS RE

FIN REG RE RE RE RE RE

REG REG RE RE RE RE RE

LIN LIN, CF RE RE RE RE RE

CF CF RE RE RE RE RE

CS RE RE RE RE RE RE

RE RE RE RE RE RE RE

3 Definitions

In this section we introduce the notion of weighted splicing systems which is spec-
ified with a weighting space and operations over weights closed in the weighting
space.

Definition 1. A weighted splicing system is a 7-tuple γ = (V, T,A,R, ω,M,�)
where V, T,R are defined as for a usual extended H system, M is a weighting
space, ω : V ∗ → M is a weight function, � is the operation over the weights
ω(x), x ∈ V ∗, and A is a subset of V ∗ ×M .

Further, we define a weighted splicing operation and the language generated by
a weighted splicing system.

Definition 2. For (x, ω(x)), (y, ω(y)), (z, ω(z)) ∈ V ∗ ×M and r ∈ R,

[(x, ω(x)), (y, ω(y))] �r (z, ω(z))

iff (x, y) �r z and ω(z) = ω(x) � ω(y). Then the language generated by the
weighted splicing system γ is defined as

Lω(γ) = {z ∈ T ∗ | (z, ω(z)) ∈ σ∗(A)}.

Remark 1. As a weighting space one can consider different sets and (algebraic)
structures, for instance, the sets of integers, rational numbers, real numbers,
the sets of Cartesian products of the sets of numbers, the set of matrices with
integer entries, the set of lattices, groups, etc. Then, the operations over weights
of strings are defined with respect to the chosen weighting space. In this paper
we consider as weighting spaces the sets of integers, positive rational numbers,
the set of Cartesian products of integers and the set of 2×2 matrices with integer
entries.
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Definition 3. Let Lω(γ) be the language generated by a weighted splicing sys-
tem γ = (V, T,A,R, ω,M,�). A threshold language Lω(γ, ∗τ) with respect to a
threshold (cut-point) τ ∈ M is a subset of Lω(γ) defined by

Lω(γ, ∗τ) = {z ∈ T ∗ | (z, ω(z)) ∈ σ∗(A) and ω(z) ∗ τ}

where ∗ ∈ {=, >,<} is called the mode of Lω(γ, ∗τ).
Remark 2. We can also consider as a threshold a subset of M . Then, the mode
for such a threshold is defined as a membership to the threshold set, i.e., for a
threshold set A ⊆ M , the modes are ∈ and /∈.
The family of threshold languages generated by weighted splicing systems of
type (F1, F2) is denoted by wEH(F1, F2) where

F1, F2 ∈ {FIN,REG,CF,LIN,CS,RE}.

From the definition, the next lemma follows immediately.

Lemma 1. For all families F1, F2 ∈ {FIN,REG,CF,LIN,CS,RE},

EH(F1, F2) ⊆ wEH(F1, F2).

Proof. For any splicing system γ, we define the weighted splicing system by
choosing {0} as the weighting space, the usual addition as the weighting opera-
tion, and associating 0 with each axiom. Then Lω(γ

′,= 0) = L(γ). ��

4 Examples and Results

In this section we consider examples of weighted splicing systems with different
weighting spaces, and show that for the same finite sets of axioms and splicing
rules, the selection of weighting spaces effect to the generative power of the
weighted splicing system, i.e., the same splicing system with different weighting
spaces can generated regular, context-free and context-sensitive languages.

Example 1. Let us consider the weighted splicing system

γ1 = ({a, b, x, y}, {a, b, x}, {(xay, τ1), (ybx, τ2)},
{r1 = a#y$x#ay, r2 = yb#x$y#b, r3 = a#y$y#b}, ω,M,�).

It is not difficult to see that the application of the rule r1 iteratively to the axiom
xay and the generated strings results in the strings xaky for all k ≥ 1, and the
application of the rule r2 iteratively to the axiom yax and the generated strings
results in the strings ybmx for all m ≥ 1. Further, applying the rule r3 to the
strings xaky, k ≥ 1, and ybmx, m ≥ 1, we obtain the strings xakbmx. Thus,

Lω(γ1) = {xakbmx | (xakbmx, ω(xakbmx)) ∈ σ∗(A), k,m ≥ 1},
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where A = {(xay, τ1), (ybx, τ2)}.
First, we choose the set Z of all integers as the weighting spaceM , the addition

+ of integers as the operation �, and τ1 = 1, τ2 = −1. Then, it is clear that

Lω(γ1) = {xakbmx | (xakbmx, k −m) ∈ σ∗(A), k,m ≥ 1}
and

Lω(γ1,= 0) = {xanbnx | n ≥ 1},
Lω(γ1, > 0) = {xakbmx | k > m ≥ 1},
Lω(γ1, < 0) = {xakbmx | m > k ≥ 1}.

These three languages are context-free and not regular.
Second, we choose the set Z × Z as the weighting space M . We define the

operation � as the componentwise addition of pairs from Z×Z, i.e., for any two
(x1, x2), (y1, y2) ∈ Z×Z, the sum is defined by (x1+y1, x2+y2) and the ordering
relation is also defined by componentwise, i.e., (x1, x2) > (y1, y2) if and only if
x1 > y1 and x2 > y2. Let τ1 = (1, 0), τ2 = (−1, 0). Then with the cut-point
(0, 0), we generate the same languages above.

Third, the same languages above are also generated, when we consider
the set of all 2 × 2 matrices with integer entries as the weighting space M ,
the componentwise addition as the operation �, the componentwise ordering

as the ordering relation, τ1 =

(
1 0
0 1

)
and τ2 =

(−1 0
0 −1

)
as the weights, and

τ =

(
0 0
0 0

)
as the cut-point.

Example 2. Consider a weighted splicing system

γ2 = ({a, b, c, w, x, y}, {a, b, w}, {(wax, τ1), (xby, τ2), (ycw, τ3)},
{r1 = a#x$w#ax, r2 = b#y$x#by, r3 = c#w$y#cw,

r4 = a#x$x#b, r5 = b#y$y#c}, ω,M,�).

One can see that for all k,m, n ≥ 1,

(wakx,wax) �r1 wak+1x, (xbmy, xby) �r2 xbm+1y, (yckw, ycw) �r3 ycn+1w.

Further,
(wakx, xbmy) �r4 wakbmy, k,m ≥ 1,

and
(wakbmy, yckw) �r5 wakbmcnw, k,m, n ≥ 1.

Then, the language generated by the weighted splicing system γ2 is

Lω(γ2) = {wakbmcnw | (wakbmcnw, ω(wakbmcnw)) ∈ σ∗(A), k,m, n ≥ 1},
where A = {(wax, τ1), (xby, τ2), (ycw, τ3)}.
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Next, we define different threshold languages with different weighting spaces
and operations.

First, let M = Q+, the operation � be the usual multiplication, and τ1 = 3−1,
τ2 = 5−1, τ3 = 15. Then,

Lω(γ2) = {wakbmcnw | (wakbmcnw, 3n−k5n−m) ∈ σ∗(A), k,m, n ≥ 1}.
We choose τ = 1 as a cut-point, and define the following threshold languages:

Lω(γ2,= 1) = {wanbncnw | n ≥ 1} ∈ CS−CF,

Lω(γ2, > 1) = {wakbmcnw | n > k,m ≥ 1} ∈ CF−REG,

Lω(γ2, < 1) = {wakbmcnw | k,m > n ≥ 1} ∈ CF−REG.

Second, let M = Z × Z, the operation � is defined as in Example 1, and τ1 =
(1, 0), τ2 = (−1, 1), τ3 = (0,−1). Then,

Lω(γ2) = {wakbmcnw | (wakbmcnw, (k −m,m− n)) ∈ σ∗(A), k,m, n ≥ 1}.
Consequently,

Lω(γ2,= (0, 0)) = {wanbncnw | n ≥ 1} ∈ CS−CF,

Lω(γ2, > (0, 0)) = {wakbmcnw | k > m > n ≥ 1} ∈ CS−CF,

Lω(γ2, < (0, 0)) = {wakbmcnw | n > m > k ≥ 1} ∈ CS−CF.

Third, the same languages above can be generated by γ2 if we choose the set of
all 2×2 matrices with integer entries as the weighting space, the componentwise
addition as the operation �,

τ1 =

(
1 0
0 1

)
, τ2 =

(−1 1
1 −1

)
and τ3 =

(
0 −1
−1 0

)
,

and τ =

(
0 0
0 0

)
as the cut-point for the threshold languages.

Remark 3. Example 2 shows that the use of a Cartesian product of integers
and matrices as weighting spaces make possible for splicing systems with finite
components to generate non-context-free languages. For instance, one can easily
construct a weighted splicing system which generates the language

{wan1an2 · · · ankw | n ≥ 1}
for any k ≥ 2, if the Cartesian product Z× Z× · · · × Z︸ ︷︷ ︸

k

is used as the weighting

space.

Combining the results of Theorem 2, Lemma 1 and Examples 1 and 2 above, we
obtain the following results:
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Theorem 3. For F1 ∈ {LIN,CF},

wEN(FIN,FIN)−EN(F1,FIN) �= ∅.

Theorem 4.

REG ⊂ wEN(FIN,FIN) ⊆ RE.

5 Conclusion

This paper introduces a new definition of weighted splicing systems and estab-
lishes some new facts. We have shown that even a simple extension of splicing
systems with weights increases the generative power of splicing systems with
finite components: in some cases they can generate non-context-free languages.
The problem of the incomparability of the family of linear and context-free lan-
guages with the family of threshold languages generated by weighted splicing
systems with finite components (the inverse inequality of that in Theorem 3)
and the strictness of the second inclusion in Theorem 4 remain open. Most
probably, linear languages as well as simple matrix languages (see [14]) can be
generated by weighted splicing systems if matrices are used as weighting spaces
but recursively enumerable languages may not be generated since the simulation
of the context-sensitivity property of phrase-structure grammars is impossible
with weights.
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